Skip to content

Commit

Permalink
add 9.9
Browse files Browse the repository at this point in the history
  • Loading branch information
ShusenTang committed Dec 29, 2019
1 parent 2dfc314 commit cd848d2
Show file tree
Hide file tree
Showing 8 changed files with 812 additions and 2 deletions.

Large diffs are not rendered by default.

76 changes: 76 additions & 0 deletions code/d2lzh_pytorch/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -1080,6 +1080,82 @@ def load_data_pikachu(batch_size, edge_size=256, data_dir = '../../data/pikachu'
return train_iter, val_iter


# ################################# 9.9 #########################
def read_voc_images(root="../../data/VOCdevkit/VOC2012",
is_train=True, max_num=None):
txt_fname = '%s/ImageSets/Segmentation/%s' % (
root, 'train.txt' if is_train else 'val.txt')
with open(txt_fname, 'r') as f:
images = f.read().split()
if max_num is not None:
images = images[:min(max_num, len(images))]
features, labels = [None] * len(images), [None] * len(images)
for i, fname in tqdm(enumerate(images)):
features[i] = Image.open('%s/JPEGImages/%s.jpg' % (root, fname)).convert("RGB")
labels[i] = Image.open('%s/SegmentationClass/%s.png' % (root, fname)).convert("RGB")
return features, labels # PIL image

# colormap2label = torch.zeros(256 ** 3, dtype=torch.uint8)
# for i, colormap in enumerate(VOC_COLORMAP):
# colormap2label[(colormap[0] * 256 + colormap[1]) * 256 + colormap[2]] = i
def voc_label_indices(colormap, colormap2label):
"""
convert colormap (PIL image) to colormap2label (uint8 tensor).
"""
colormap = np.array(colormap.convert("RGB")).astype('int32')
idx = ((colormap[:, :, 0] * 256 + colormap[:, :, 1]) * 256
+ colormap[:, :, 2])
return colormap2label[idx]

def voc_rand_crop(feature, label, height, width):
"""
Random crop feature (PIL image) and label (PIL image).
"""
i, j, h, w = torchvision.transforms.RandomCrop.get_params(
feature, output_size=(height, width))

feature = torchvision.transforms.functional.crop(feature, i, j, h, w)
label = torchvision.transforms.functional.crop(label, i, j, h, w)

return feature, label

class VOCSegDataset(torch.utils.data.Dataset):
def __init__(self, is_train, crop_size, voc_dir, colormap2label, max_num=None):
"""
crop_size: (h, w)
"""
self.rgb_mean = np.array([0.485, 0.456, 0.406])
self.rgb_std = np.array([0.229, 0.224, 0.225])
self.tsf = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=self.rgb_mean,
std=self.rgb_std)
])

self.crop_size = crop_size # (h, w)
features, labels = read_voc_images(root=voc_dir,
is_train=is_train,
max_num=max_num)
self.features = self.filter(features) # PIL image
self.labels = self.filter(labels) # PIL image
self.colormap2label = colormap2label
print('read ' + str(len(self.features)) + ' valid examples')

def filter(self, imgs):
return [img for img in imgs if (
img.size[1] >= self.crop_size[0] and
img.size[0] >= self.crop_size[1])]

def __getitem__(self, idx):
feature, label = voc_rand_crop(self.features[idx], self.labels[idx],
*self.crop_size)

return (self.tsf(feature),
voc_label_indices(label, self.colormap2label))

def __len__(self):
return len(self.features)



# ############################# 10.7 ##########################
Expand Down
2 changes: 1 addition & 1 deletion docs/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -114,7 +114,7 @@ docsify serve docs
* [9.6 目标检测数据集(皮卡丘)](chapter09_computer-vision/9.6_object-detection-dataset.md)
- [ ] 9.7 单发多框检测(SSD)
* [9.8 区域卷积神经网络(R-CNN)系列](chapter09_computer-vision/9.8_rcnn.md)
- [ ] 9.9 语义分割和数据集
* [9.9 语义分割和数据集](chapter09_computer-vision/9.9_semantic-segmentation-and-dataset.md)
- [ ] 9.10 全卷积网络(FCN)
* [9.11 样式迁移](chapter09_computer-vision/9.11_neural-style.md)
- [ ] 9.12 实战Kaggle比赛:图像分类(CIFAR-10)
Expand Down
2 changes: 1 addition & 1 deletion docs/_sidebar.md
Original file line number Diff line number Diff line change
Expand Up @@ -76,7 +76,7 @@
* [9.6 目标检测数据集(皮卡丘)](chapter09_computer-vision/9.6_object-detection-dataset.md)
* 9.7 单发多框检测(SSD)
* [9.8 区域卷积神经网络(R-CNN)系列](chapter09_computer-vision/9.8_rcnn.md)
* 9.9 语义分割和数据集
* [9.9 语义分割和数据集](chapter09_computer-vision/9.9_semantic-segmentation-and-dataset.md)
* 9.10 全卷积网络(FCN)
* [9.11 样式迁移](chapter09_computer-vision/9.11_neural-style.md)
* 9.12 实战Kaggle比赛:图像分类(CIFAR-10)
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,264 @@
# 9.9 语义分割和数据集

在前几节讨论的目标检测问题中,我们一直使用方形边界框来标注和预测图像中的目标。本节将探讨语义分割(semantic segmentation)问题,它关注如何将图像分割成属于不同语义类别的区域。值得一提的是,这些语义区域的标注和预测都是像素级的。图9.10展示了语义分割中图像有关狗、猫和背景的标签。可以看到,与目标检测相比,语义分割标注的像素级的边框显然更加精细。

<div align=center>
<img width="400" src="../img/chapter09/9.9_segmentation.svg"/>
</div>
<div align=center>图9.10 语义分割中图像有关狗、猫和背景的标签</div>

## 9.9.1 图像分割和实例分割

计算机视觉领域还有2个与语义分割相似的重要问题,即图像分割(image segmentation)和实例分割(instance segmentation)。我们在这里将它们与语义分割简单区分一下。

* 图像分割将图像分割成若干组成区域。这类问题的方法通常利用图像中像素之间的相关性。它在训练时不需要有关图像像素的标签信息,在预测时也无法保证分割出的区域具有我们希望得到的语义。以图9.10的图像为输入,图像分割可能将狗分割成两个区域:一个覆盖以黑色为主的嘴巴和眼睛,而另一个覆盖以黄色为主的其余部分身体。
* 实例分割又叫同时检测并分割(simultaneous detection and segmentation)。它研究如何识别图像中各个目标实例的像素级区域。与语义分割有所不同,实例分割不仅需要区分语义,还要区分不同的目标实例。如果图像中有两只狗,实例分割需要区分像素属于这两只狗中的哪一只。


## 9.9.2 Pascal VOC2012语义分割数据集

语义分割的一个重要数据集叫作Pascal VOC2012 [1]。为了更好地了解这个数据集,我们先导入实验所需的包或模块。

``` python
%matplotlib inline
import time
import torch
import torch.nn.functional as F
import torchvision
import numpy as np
from PIL import Image
from tqdm import tqdm

import sys
sys.path.append("..")
import d2lzh_pytorch as d2l
```

我们先下载这个数据集的压缩包([下载地址](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar))。压缩包大小是2 GB左右,下载需要一定时间。下载后解压得到`VOCdevkit/VOC2012`文件夹,然后将其放置在`data`文件夹下。

``` python
!ls ../../data/VOCdevkit/VOC2012
```
```
Annotations JPEGImages SegmentationObject
ImageSets SegmentationClass
```

进入`../../data/VOCdevkit/VOC2012`路径后,我们可以获取数据集的不同组成部分。其中`ImageSets/Segmentation`路径包含了指定训练和测试样本的文本文件,而`JPEGImages``SegmentationClass`路径下分别包含了样本的输入图像和标签。这里的标签也是图像格式,其尺寸和它所标注的输入图像的尺寸相同。标签中颜色相同的像素属于同一个语义类别。下面定义`read_voc_images`函数将输入图像和标签读进内存。

``` python
# 本函数已保存在d2lzh_pytorch中方便以后使用
def read_voc_images(root="../../data/VOCdevkit/VOC2012",
is_train=True, max_num=None):
txt_fname = '%s/ImageSets/Segmentation/%s' % (
root, 'train.txt' if is_train else 'val.txt')
with open(txt_fname, 'r') as f:
images = f.read().split()
if max_num is not None:
images = images[:min(max_num, len(images))]
features, labels = [None] * len(images), [None] * len(images)
for i, fname in tqdm(enumerate(images)):
features[i] = Image.open('%s/JPEGImages/%s.jpg' % (root, fname)).convert("RGB")
labels[i] = Image.open('%s/SegmentationClass/%s.png' % (root, fname)).convert("RGB")
return features, labels # PIL image

voc_dir = "../../data/VOCdevkit/VOC2012"
train_features, train_labels = read_voc_images(voc_dir, max_num=100)
```

我们画出前5张输入图像和它们的标签。在标签图像中,白色和黑色分别代表边框和背景,而其他不同的颜色则对应不同的类别。

``` python
n = 5
imgs = train_features[0:n] + train_labels[0:n]
d2l.show_images(imgs, 2, n);
```
<div align=center>
<img width="500" src="../img/chapter09/9.9_output1.png"/>
</div>

接下来,我们列出标签中每个RGB颜色的值及其标注的类别。

``` python
# 本函数已保存在d2lzh_pytorch中方便以后使用
VOC_COLORMAP = [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0],
[0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128],
[64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0],
[64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128],
[0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0],
[0, 64, 128]]
# 本函数已保存在d2lzh_pytorch中方便以后使用
VOC_CLASSES = ['background', 'aeroplane', 'bicycle', 'bird', 'boat',
'bottle', 'bus', 'car', 'cat', 'chair', 'cow',
'diningtable', 'dog', 'horse', 'motorbike', 'person',
'potted plant', 'sheep', 'sofa', 'train', 'tv/monitor']
```

有了上面定义的两个常量以后,我们可以很容易地查找标签中每个像素的类别索引。

``` python
colormap2label = torch.zeros(256 ** 3, dtype=torch.uint8)
for i, colormap in enumerate(VOC_COLORMAP):
colormap2label[(colormap[0] * 256 + colormap[1]) * 256 + colormap[2]] = i

# 本函数已保存在d2lzh_pytorch中方便以后使用
def voc_label_indices(colormap, colormap2label):
"""
convert colormap (PIL image) to colormap2label (uint8 tensor).
"""
colormap = np.array(colormap.convert("RGB")).astype('int32')
idx = ((colormap[:, :, 0] * 256 + colormap[:, :, 1]) * 256
+ colormap[:, :, 2])
return colormap2label[idx]
```

例如,第一张样本图像中飞机头部区域的类别索引为1,而背景全是0。

``` python
y = voc_label_indices(train_labels[0], colormap2label)
y[105:115, 130:140], VOC_CLASSES[1]
```
输出:
```
(tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 1, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 1]], dtype=torch.uint8), 'aeroplane')
```

### 9.9.2.1 预处理数据

在之前的章节中,我们通过缩放图像使其符合模型的输入形状。然而在语义分割里,这样做需要将预测的像素类别重新映射回原始尺寸的输入图像。这样的映射难以做到精确,尤其在不同语义的分割区域。为了避免这个问题,我们将图像裁剪成固定尺寸而不是缩放。具体来说,我们使用图像增广里的随机裁剪,并对输入图像和标签裁剪相同区域。

``` python
# 本函数已保存在d2lzh_pytorch中方便以后使用
def voc_rand_crop(feature, label, height, width):
"""
Random crop feature (PIL image) and label (PIL image).
"""
i, j, h, w = torchvision.transforms.RandomCrop.get_params(
feature, output_size=(height, width))

feature = torchvision.transforms.functional.crop(feature, i, j, h, w)
label = torchvision.transforms.functional.crop(label, i, j, h, w)

return feature, label

imgs = []
for _ in range(n):
imgs += voc_rand_crop(train_features[0], train_labels[0], 200, 300)
d2l.show_images(imgs[::2] + imgs[1::2], 2, n);
```
<div align=center>
<img width="500" src="../img/chapter09/9.9_output2.png"/>
</div>

### 9.9.2.2 自定义语义分割数据集类

我们通过继承PyTorch提供的`Dataset`类自定义了一个语义分割数据集类`VOCSegDataset`。通过实现`__getitem__`函数,我们可以任意访问数据集中索引为`idx`的输入图像及其每个像素的类别索引。由于数据集中有些图像的尺寸可能小于随机裁剪所指定的输出尺寸,这些样本需要通过自定义的`filter`函数所移除。此外,我们还对输入图像的RGB三个通道的值分别做标准化。

``` python
# 本函数已保存在d2lzh_pytorch中方便以后使用
class VOCSegDataset(torch.utils.data.Dataset):
def __init__(self, is_train, crop_size, voc_dir, colormap2label, max_num=None):
"""
crop_size: (h, w)
"""
self.rgb_mean = np.array([0.485, 0.456, 0.406])
self.rgb_std = np.array([0.229, 0.224, 0.225])
self.tsf = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=self.rgb_mean,
std=self.rgb_std)
])

self.crop_size = crop_size # (h, w)
features, labels = read_voc_images(root=voc_dir,
is_train=is_train,
max_num=max_num)
self.features = self.filter(features) # PIL image
self.labels = self.filter(labels) # PIL image
self.colormap2label = colormap2label
print('read ' + str(len(self.features)) + ' valid examples')

def filter(self, imgs):
return [img for img in imgs if (
img.size[1] >= self.crop_size[0] and
img.size[0] >= self.crop_size[1])]

def __getitem__(self, idx):
feature, label = voc_rand_crop(self.features[idx], self.labels[idx],
*self.crop_size)

return (self.tsf(feature), # float32 tensor
voc_label_indices(label, self.colormap2label)) # uint8 tensor

def __len__(self):
return len(self.features)
```

### 9.9.2.3 读取数据集

我们通过自定义的`VOCSegDataset`类来分别创建训练集和测试集的实例。假设我们指定随机裁剪的输出图像的形状为$320\times 480$。下面我们可以查看训练集和测试集所保留的样本个数。

``` python
crop_size = (320, 480)
max_num = 100
voc_train = VOCSegDataset(True, crop_size, voc_dir, colormap2label, max_num)
voc_test = VOCSegDataset(False, crop_size, voc_dir, colormap2label, max_num)
```
输出:
```
read 75 valid examples
read 77 valid examples
```

设批量大小为64,分别定义训练集和测试集的迭代器。

``` python
batch_size = 64
num_workers = 0 if sys.platform.startswith('win32') else 4
train_iter = torch.utils.data.DataLoader(voc_train, batch_size, shuffle=True,
drop_last=True, num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(voc_test, batch_size, drop_last=True,
num_workers=num_workers)
```

打印第一个小批量的类型和形状。不同于图像分类和目标识别,这里的标签是一个三维数组。

``` python
for X, Y in train_iter:
print(X.dtype, X.shape)
print(y.dtype, Y.shape)
break
```
输出:
```
torch.float32 torch.Size([64, 3, 320, 480])
torch.uint8 torch.Size([64, 320, 480])
```

## 小结

* 语义分割关注如何将图像分割成属于不同语义类别的区域。
* 语义分割的一个重要数据集叫作Pascal VOC2012。
* 由于语义分割的输入图像和标签在像素上一一对应,所以将图像随机裁剪成固定尺寸而不是缩放。

## 练习

* 回忆9.1节(图像增广)中的内容。哪些在图像分类中使用的图像增广方法难以用于语义分割?

## 参考文献

[1] Pascal VOC2012数据集。http://host.robots.ox.ac.uk/pascal/VOC/voc2012/


-----------
> 注:除代码外本节与原书基本相同,[原书传送门](http://zh.d2l.ai/chapter_computer-vision/semantic-segmentation-and-dataset.html)
Binary file added docs/img/chapter09/9.9_output1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/img/chapter09/9.9_output2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading

0 comments on commit cd848d2

Please sign in to comment.