Skip to content

Commit

Permalink
init
Browse files Browse the repository at this point in the history
  • Loading branch information
ShoufaChen committed Jul 21, 2021
0 parents commit f28b56b
Show file tree
Hide file tree
Showing 25 changed files with 2,077 additions and 0 deletions.
28 changes: 28 additions & 0 deletions .circleci/config.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
version: 2.1

jobs:
python_lint:
docker:
- image: circleci/python:3.7
steps:
- checkout
- run:
command: |
pip install --user --progress-bar off flake8 typing
flake8 .
test:
docker:
- image: circleci/python:3.7
steps:
- checkout
- run:
command: |
pip install --user --progress-bar off pytest
pip install --user --progress-bar off torch torchvision
pip install --user --progress-bar off timm==0.3.2
pytest .
workflows:
build:
jobs:
- python_lint
5 changes: 5 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
*.swp
**/__pycache__/**
imnet_resnet50_scratch/timm_temp/
.dumbo.json
checkpoints/
21 changes: 21 additions & 0 deletions LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2021 Shoufa Chen

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
91 changes: 91 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
# A MLP-like Architecture for Dense Prediction

[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
![Python 3.8](https://img.shields.io/badge/python-3.8-green.svg)



<p align="middle">
<img src="figures/teaser.png" height="300" />
&nbsp;&nbsp;&nbsp;&nbsp;
<img src="figures/flops.png" height="300" />
</p>

# Updates

- (22/07/2021) Initial release.



# Model Zoo

We provide CycleMLP models pretrained on ImageNet 2012.

| Model | Parameters | FLOPs | Top 1 Acc. | Download |
| :------------------- | :--------- | :------- | :--------- | :------- |
| CycleMLP-B1 | 15M | 2.1G | 78.9% | |
| CycleMLP-B2 | 27M | 3.9G | 81.6% | |
| CycleMLP-B3 | 38M | 6.9G | 82.4% | |
| CycleMLP-B4 | 52M | 10.1G | 83.0% | |
| CycleMLP-B5 | 76M | 12.3G | 83.2% | |


# Usage


## Install

- PyTorch 1.7.0+ and torchvision 0.8.1+
- [timm](https://github.com/rwightman/pytorch-image-models/tree/c2ba229d995c33aaaf20e00a5686b4dc857044be):
```
pip install 'git+https://github.com/rwightman/pytorch-image-models@c2ba229d995c33aaaf20e00a5686b4dc857044be'
or
git clone https://github.com/rwightman/pytorch-image-models
cd pytorch-image-models
git checkout c2ba229d995c33aaaf20e00a5686b4dc857044be
pip install -e .
```
- fvcore (optional, for FLOPs calculation)
- mmcv, mmdetection, mmsegmentation (optional)

## Data preparation

Download and extract ImageNet train and val images from http://image-net.org/.
The directory structure is:

```
│path/to/imagenet/
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
```

## Evaluation
To evaluate a pre-trained CycleMLP-B5 on ImageNet val with a single GPU run:
```
python main.py --eval --model CycleMLP_B5 --resume path/to/CycleMLP_B5.pth --data-path /path/to/imagenet
```


## Training

To train CycleMLP-B5 on ImageNet on a single node with 8 gpus for 300 epochs run:
```
python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --model CycleMLP_B5 --batch-size 128 --data-path /path/to/imagenet --output_dir /path/to/save
```


# License

CycleMLP is released under MIT License.
Loading

0 comments on commit f28b56b

Please sign in to comment.