Skip to content

The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`

License

Notifications You must be signed in to change notification settings

ShannonAI/dice_loss_for_NLP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dice Loss for NLP Tasks

This repository contains code for Dice Loss for Data-imbalanced NLP Tasks at ACL2020.

Setup

  • Install Package Dependencies

The code was tested in Python 3.6.9+ and Pytorch 1.7.1. If you are working on ubuntu GPU machine with CUDA 10.1, please run the following command to setup environment.

$ virtualenv -p /usr/bin/python3.6 venv
$ source venv/bin/activate
$ pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
$ pip install -r requirements.txt
  • Download BERT Model Checkpoints

Before running the repo you must download the BERT-Base and BERT-Large checkpoints from here and unzip it to some directory $BERT_DIR. Then convert original TensorFlow checkpoints for BERT to a PyTorch saved file by running bash scripts/prepare_ckpt.sh <path-to-unzip-tf-bert-checkpoints>.

Apply Dice-Loss to NLP Tasks

In this repository, we apply dice loss to four NLP tasks, including

  1. machine reading comprehension
  2. paraphrase identification task
  3. named entity recognition
  4. text classification

1. Machine Reading Comprehension

Datasets

We take SQuAD 1.1 as an example. Before training, you should download a copy of the data from here.
And move the SQuAD 1.1 train train-v1.1.json and dev file dev-v1.1.json to the directory $DATA_DIR.

Train

We choose BERT as the backbone. During training, the task trainer BertForQA will automatically evaluate on dev set every $val_check_interval epoch, and save the dev predictions into files called $OUTPUT_DIR/predictions_<train-epoch>_<total-train-step>.json and $OUTPUT_DIR/nbest_predictions_<train-epoch>_<total-train-step>.json.

Run scripts/mrc_squad1/bert_<model-scale>_<loss-type>.sh to reproduce our experimental results.
The variable <model-scale> should take the value of [base, large].
The variable <loss-type> should take the value of [bce, focal, dice] which denotes fine-tuning BERT-Base with binary cross entropy loss, focal loss, dice loss , respectively.

  • Run bash scripts/mrc_squad1/bert_base_focal.sh to start training. After training, run bash scripts/mrc_squad1/eval_pred_file.sh $DATA_DIR $OUTPUT_DIR for focal loss.

  • Run bash scripts/mrc_squad1/bert_base_dice.sh to start training. After training, run bash scripts/mrc_squad1/eval_pred_file.sh $DATA_DIR $OUTPUT_DIR for dice loss.

Evaluate

To evaluate a model checkpoint, please run

python3 tasks/squad/evaluate_models.py \
--gpus="1" \
--path_to_model_checkpoint  $OUTPUT_DIR/epoch=2.ckpt \
--eval_batch_size <evaluate-batch-size>

After evaluation, prediction results predictions_dev.json and nbest_predictions_dev.json can be found in $OUTPUT_DIR

To evaluate saved predictions, please run

python3 tasks/squad/evaluate_predictions.py <path-to-dev-v1.1.json> <directory-to-prediction-files>

2. Paraphrase Identification Task

Datasets

We use MRPC (GLUE Version) as an example. Before running experiments, you should download and save the processed dataset files to $DATA_DIR.

Run bash scripts/prepare_mrpc_data.sh $DATA_DIR to download and process datasets for MPRC (GLUE Version) task.

Train

Please run scripts/glue_mrpc/bert_<model-scale>_<loss-type>.sh to train and evaluate on the dev set every $val_check_interval epoch. After training, the task trainer evaluates on the test set with the best checkpoint which achieves the highest F1-score on the dev set.
The variable <model-scale> should take the value of [base, large].
The variable <loss-type> should take the value of [focal, dice] which denotes fine-tuning BERT with focal loss, dice loss , respectively.

  • Run bash scripts/glue_mrpc/bert_large_focal.sh for focal loss.

  • Run bash scripts/glue_mrpc/bert_large_dice.sh for dice loss.

The evaluation results on the dev and test set are saved at $OUTPUT_DIR/eval_result_log.txt file.
The intermediate model checkpoints are saved at most $max_keep_ckpt times.

Evaluate

To evaluate a model checkpoint on test set, please run

bash scripts/glue_mrpc/eval.sh \
$OUTPUT_DIR \
epoch=*.ckpt

3. Named Entity Recognition

For NER, we use MRC-NER model as the backbone.
Processed datasets and model architecture can be found here.

Train

Please run scripts/<ner-datdaset-name>/bert_<loss-type>.sh to train and evaluate on the dev set every $val_check_interval epoch. After training, the task trainer evaluates on the test set with the best checkpoint.
The variable <ner-dataset-name> should take the value of [ner_enontonotes5, ner_zhmsra, ner_zhonto4].
The variable <loss-type> should take the value of [focal, dice] which denotes fine-tuning BERT with focal loss, dice loss , respectively.

For Chinese MSRA,

  • Run scripts/ner_zhmsra/bert_focal.sh for focal loss.

  • Run scripts/ner_zhmsra/bert_dice.sh for dice loss.

For Chinese OntoNotes4,

  • Run scripts/ner_zhonto4/bert_focal.sh for focal loss.

  • Run scripts/ner_zhonto4/bert_dice.sh for dice loss.

For English CoNLL03,

  • Run scritps/ner_enconll03/bert_focal.sh. After training, you will get 93.08 Span-F1 on the test set.

  • Run scripts/ner_enconll03/bert_dice.sh. After training, you will get 93.21 Span-F1 on the test set.

For English OntoNotes5,

  • Run scripts/ner_enontonotes5/bert_focal.sh. After training, you will get 91.12 Span-F1 on the test set.

  • Run scripts/ner_enontonotes5/bert_dice.sh. After training, you will get 92.01 Span-F1 on the test set.

Evaluate

To evaluate a model checkpoint, please run

CUDA_VISIBLE_DEVICES=0 python3 ${REPO_PATH}/tasks/mrc_ner/evaluate.py \
--gpus="1" \
--path_to_model_checkpoint $OUTPUT_DIR/epoch=2.ckpt

4. Text Classification

Datasets

We use TNews (Chinese Text Classification) as an example. Before running experiments, you should download and save the processed dataset files to $DATA_DIR.

Train

We choose BERT as the backbone.
Please run scripts/textcl_tnews/bert_<loss-type>.sh to train and evaluate on the dev set every $val_check_interval epoch. The variable <loss-type> should take the value of [focal, dice] which denotes fine-tuning BERT with focal loss, dice loss , respectively.

  • Run bash scripts/textcl_tnews/bert_focal.sh for focal loss.

  • Run bash scripts/textcl_tnews/bert_dice.sh for dice loss.

The intermediate model checkpoints are saved at most $max_keep_ckpt times.

Citation

If you find this repository useful , please cite the following:

@article{li2019dice,
  title={Dice loss for data-imbalanced NLP tasks},
  author={Li, Xiaoya and Sun, Xiaofei and Meng, Yuxian and Liang, Junjun and Wu, Fei and Li, Jiwei},
  journal={arXiv preprint arXiv:1911.02855},
  year={2019}
}

Contact

xxiaoyali [AT] gmail.com OR xiaoya_li [AT] shannonai.com

Any discussions, suggestions and questions are welcome!

About

The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published