by Han Wu, Jiadong Zhang, Yu Fang, Zhentao Liu, Nizhuan Wang, Zhiming Cui and Dinggang Shen.
arXiv link: https://arxiv.org/abs/2307.12845 paper link: https://link.springer.com/chapter/10.1007/978-3-031-43904-9_14
This repository is the reference code for our paper 'Multi-View Vertebra Localization and Identification from CT Images' in MICCAI 2023.
This repository is based on PyTorch 1.12.1 + Plastimatch 1.9.4.
For installation of the Plastimatch, you can refer to Plastimatch.
- Preprocess the data
preprocess/preprocess.py
- DRR Generation
preprocess/generate_drr.py
preprocess/generate_drr_heatmap.py
- Multi-View Contrastive Learning
contrastive_learning/train_multi_view.py
- Localization/ Identification network training
train/train_localization.py
train/train_id_as_seg.py
- Preprocess the data
preprocess/preprocess.py
- DRR Generation
preprocess/generate_drr.py
- Single-View Localization & Identification
- Multi-View Fusion
- Evaluation
# 3-5 are all in eval_all.py
eavl/eval_all.py
Public dataset:
- (VerSe'19 train): https://s3.bonescreen.de/public/VerSe-complete/dataset-verse19training.zip
- (VerSe'19 validation): https://s3.bonescreen.de/public/VerSe-complete/dataset-verse19validation.zip
- (VerSe'19 test): https://s3.bonescreen.de/public/VerSe-complete/dataset-verse19test.zip
@inproceedings{wu2023multi,
title={Multi-view vertebra localization and identification from ct images},
author={Wu, Han and Zhang, Jiadong and Fang, Yu and Liu, Zhentao and Wang, Nizhuan and Cui, Zhiming and Shen, Dinggang},
booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
pages={136--145},
year={2023},
organization={Springer}
}