Skip to content

Lexical semantic change detection shared task at SemEval 2020: UiO-UVA team

License

Notifications You must be signed in to change notification settings

Semantics-of-Sustainability/semeval2020

 
 

Repository files navigation

Contextualised Embeddings for Lexical Semantic Change Detection

This code accompanies the paper UiO-UvA at SemEval-2020 Task 1: Contextualised Embeddings for Lexical Semantic Change Detection, which describes our participation in SemEval 2020 Task 1: Unsupervised Lexical Semantic Change Detection.

Extraction of contextualized token embeddings

For ELMo: python3 code/elmo/extract_elmo.py --input <CORPUS> --elmo <ELMO_MODEL> --outfile <OUTFILE> --vocab <TARGET_WORDS>

For BERT: python3 code/bert/collect.py <PATH_TO_MODEL> <CORPUS> <TARGET_WORDS> <OUTFILE>

These scripts produce npz archives containing numpy arrays with token embeddings for each target word in a given corpus.

Estimating semantic change

  • COS algorithm: python3 code/cosine.py -t <TARGET_WORDS> -i0 corpus0.npz -i1 corpus1.npz > cosine_change.txt

  • APD algorithm: python3 code/distance.py <TARGET_WORDS> corpus0.npz corpus1.npz apd_change.txt

  • JSD algorithm: python3 code/jsd.py <TARGET_WORDS> corpus0.npz corpus1.npz jsd_change.txt

These scripts produce plain text files containing lists of words with their corresponding degree of semantic change between corpus0 and corpus1.

Download pre-trained embeddings

ELMo

BERT

Authors

  • Andrey Kutuzov (University of Oslo, Norway)
  • Mario Giulianelli (University of Amsterdam, Netherlands)

SemEval-2020 Task 1 Reference


Dominik Schlechtweg, Barbara McGillivray, Simon Hengchen, Haim Dubossarsky and Nina Tahmasebi. SemEval 2020 Task 1: Unsupervised Lexical Semantic Change Detection. To appear in SemEval@COLING2020.

About

Lexical semantic change detection shared task at SemEval 2020: UiO-UVA team

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 83.1%
  • Shell 16.9%