Skip to content

Commit

Permalink
Fix example in top level readme
Browse files Browse the repository at this point in the history
  • Loading branch information
ukclivecox committed Jun 11, 2020
1 parent bcbb515 commit ba16e19
Showing 1 changed file with 9 additions and 3 deletions.
12 changes: 9 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,12 @@ You only have to upload your model binaries into your preferred object store, in
gs://seldon-models/sklearn/iris/model.pickle
```

Create a namespace to run your model in:

```
kubectl create namespace seldon
```

We then can deploy this model with Seldon Core to our Kubernetes cluster using the pre-packaged model server for scikit-learn (SKLEARN_SERVER) by running the `kubectl apply` command below:

```yaml
Expand All @@ -71,7 +77,7 @@ apiVersion: machinelearning.seldon.io/v1
kind: SeldonDeployment
metadata:
name: iris-model
namespace: model-namespace
namespace: seldon
spec:
name: iris
predictors:
Expand All @@ -95,9 +101,9 @@ This can be accessed through the endpoint `http://<ingress_url>/seldon/<namespac
Or alternatively you can send requests programmatically using our [Seldon Python Client](https://docs.seldon.io/projects/seldon-core/en/latest/python/seldon_client.html) or another Linux CLI:

```console
$ curl -X POST http://<ingress>/seldon/model-namespace/iris-model/api/v1.0/predictions \
$ curl -X POST http://<ingress>/seldon/seldon/iris-model/api/v1.0/predictions \
-H 'Content-Type: application/json' \
-d '{ "data": { "ndarray": [1,2,3,4] } }' | json_pp
-d '{ "data": { "ndarray": [[1,2,3,4]] } }'

{
"meta" : {},
Expand Down

0 comments on commit ba16e19

Please sign in to comment.