Skip to content
This repository has been archived by the owner on Sep 9, 2024. It is now read-only.

Commit

Permalink
Added iterator version of oderkf
Browse files Browse the repository at this point in the history
  • Loading branch information
pwl committed Oct 21, 2014
1 parent 568c213 commit 7d6265b
Showing 1 changed file with 112 additions and 28 deletions.
140 changes: 112 additions & 28 deletions src/ODE.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,8 @@ module ODE

using Polynomial

import Base: start, next, done

## minimal function export list
export ode23, ode4, ode45, ode4s, ode4ms, ode78

Expand Down Expand Up @@ -181,30 +183,85 @@ end # ode23
# [email protected]
# created : 06 October 1999
# modified: 17 January 2001
function oderkf(F, x0, tspan, p, a, bs, bp; reltol = 1.0e-5, abstol = 1.0e-8)

immutable type ODErkf
F :: Function
x0
tstart
coefs
reltol;abstol
hmin;hmax;h0;tstop
end

immutable type ODErkfState
t;x;h
stop
k
end

function oderkf{T<:Number}(F,x0,tstart::T,p,a,bs,bp;
reltol = 1.0e-5,
abstol = 1.0e-8,
minstep = eps(T)^(1/3),
maxstep = 1/minstep,
initstep = minstep,
tstop = Inf)
ODErkf(F,x0,tstart,(p,a,bs,bp),reltol,abstol,minstep,maxstep,initstep,tstop)
end

function start(problem::ODErkf)
t0 = problem.tstart
x0 = problem.x0
h0 = problem.h0
k = Array(typeof(x0), size(problem.coefs[2],1))
return ODErkfState(t0,x0,h0,false,k)
end

done(problem::ODErkf,state::ODErkfState) = state.stop

function next(problem::ODErkf,state)
p = problem.coefs[1]
a = problem.coefs[2]
bs = problem.coefs[3]
bp = problem.coefs[4]

# see p.91 in the Ascher & Petzold reference for more infomation.
pow = 1/p # use the higher order to estimate the next step size

c = sum(a, 2) # consistency condition

# Initialization
t = tspan[1]
tfinal = tspan[end]
tdir = sign(tfinal - t)
hmax = abs(tfinal - t)/2.5
hmin = abs(tfinal - t)/1e9
h = tdir*abs(tfinal - t)/100 # initial guess at a step size
x = x0
tout = t # first output time
xout = Array(typeof(x0), 1)
xout[1] = x # first output solution

k = Array(typeof(x0), length(c))
t = state.t
h = state.h
x = state.x
k = state.k

# # return the first step on the beginning of integration
# if t == problem.tstart
# return ((t,x),ODErkfState(t,x,h,false,k))
# end

F = problem.F
tmax = problem.tstop
hmin = problem.hmin
hmax = problem.hmax

k[1] = F(t,x) # first stage

while abs(t) != abs(tfinal) && abs(h) >= hmin
if abs(h) > abs(tfinal-t)
h = tfinal - t
stop = false

# loop over decreasing step sizes, until desired accuracy is
# reached or the step size becomes smaller than hmin
while true

# trim the step size if t+h exceeds the tmax
if abs(h) > abs(tmax-t)
h = tmax - t
end

if abs(h) < abs(hmin)
warn("Step size grew too small. t=$t, h=$h")
stop = true
break
end

#(p-1)th and pth order estimates
Expand All @@ -228,14 +285,19 @@ function oderkf(F, x0, tspan, p, a, bs, bp; reltol = 1.0e-5, abstol = 1.0e-8)

# Estimate the error and the acceptable error
delta = norm(gamma1, Inf) # actual error
tau = max(reltol*norm(x,Inf),abstol) # allowable error
tau = max(problem.reltol*norm(x,Inf),problem.abstol) # allowable error

# Save the value of h
h1 = h
# Update the step size
h = min(hmax, 0.8*h*(tau/delta)^pow)
@show x

# Update the solution only if the error is acceptable
if delta <= tau
t = t + h

t = t + h1
x = xp # <-- using the higher order estimate is called 'local extrapolation'
tout = [tout; t]
push!(xout, x)

# Compute the slopes by computing the k[:,j+1]'th column based on the previous k[:,1:j] columns
# notes: k needs to end up as an Nxs, a is 7x6, which is s by (s-1),
Expand All @@ -249,17 +311,39 @@ function oderkf(F, x0, tspan, p, a, bs, bp; reltol = 1.0e-5, abstol = 1.0e-8)
else
k[1] = F(t,x) # first stage
end
end

# Update the step size
h = min(hmax, 0.8*h*(tau/delta)^pow)
end # while (t < tfinal) & (h >= hmin)
break

elseif !isfinite(delta)
# something went wrong, evacuate immediately
warn("New step contains NaN or Inf. t=$t, h=$h")
stop = true
break
end

if abs(t) < abs(tfinal)
println("Step size grew too small. t=", t, ", h=", abs(h), ", x=", x)
end

return tout, xout
# stop if we reached tmax
stop = stop || abs(t) >= abs(tmax)

return ((t,x),ODErkfState(t,x,h,stop,k))

end


function oderkf(F,x0,tspan::Vector,coefs...;args...)
t0 = tspan[1]
tstop = tspan[end]

ode = oderkf(F,x0,t0,coefs...;args...,tstop=tstop)

tout = Array(typeof(t0),0)
xout = Array(typeof(x0),0)
for (t,x) in ode
push!(tout,t)
push!(xout,x)
end
return (tout,xout)
end

# Bogacki–Shampine coefficients
Expand Down

0 comments on commit 7d6265b

Please sign in to comment.