Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor: use layers from Boltz #937

Merged
merged 9 commits into from
Sep 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions .buildkite/pipeline.yml
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,9 @@ steps:
version: "1.10"
- JuliaCI/julia-test#v1:
coverage: true
dirs:
- src
- ext
agents:
queue: "juliagpu"
cuda: "*"
Expand Down
2 changes: 2 additions & 0 deletions .github/workflows/CI.yml
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,8 @@ jobs:
env:
GROUP: ${{ matrix.group }}
- uses: julia-actions/julia-processcoverage@v1
with:
directories: src,ext
- uses: codecov/codecov-action@v4
with:
file: lcov.info
Expand Down
24 changes: 16 additions & 8 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,16 +1,14 @@
name = "DiffEqFlux"
uuid = "aae7a2af-3d4f-5e19-a356-7da93b79d9d0"
authors = ["Chris Rackauckas <[email protected]>"]
version = "3.5.2"
version = "3.6.0"

[deps]
ADTypes = "47edcb42-4c32-4615-8424-f2b9edc5f35b"
Boltz = "4544d5e4-abc5-4dea-817f-29e4c205d9c8"
ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
ConcreteStructs = "2569d6c7-a4a2-43d3-a901-331e8e4be471"
DataInterpolations = "82cc6244-b520-54b8-b5a6-8a565e85f1d0"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
DistributionsAD = "ced4e74d-a319-5a8a-b0ac-84af2272839c"
ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Lux = "b2108857-7c20-44ae-9111-449ecde12c47"
LuxCore = "bb33d45b-7691-41d6-9220-0943567d0623"
Expand All @@ -20,22 +18,28 @@ Reexport = "189a3867-3050-52da-a836-e630ba90ab69"
SciMLBase = "0bca4576-84f4-4d90-8ffe-ffa030f20462"
SciMLSensitivity = "1ed8b502-d754-442c-8d5d-10ac956f44a1"
Setfield = "efcf1570-3423-57d1-acb7-fd33fddbac46"
Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"

[weakdeps]
DataInterpolations = "82cc6244-b520-54b8-b5a6-8a565e85f1d0"

[extensions]
DiffEqFluxDataInterpolationsExt = "DataInterpolations"

[compat]
ADTypes = "1.5"
Aqua = "0.8.7"
BenchmarkTools = "1.5.0"
Boltz = "0.4.2"
ChainRulesCore = "1"
ComponentArrays = "0.15.17"
ConcreteStructs = "0.2"
DataInterpolations = "< 5.3"
DataInterpolations = "5, 6"
DelayDiffEq = "5.47.3"
DiffEqCallbacks = "3.6.2"
Distances = "0.10.11"
Distributed = "1.10"
Distributions = "0.25"
DistributionsAD = "0.6"
DistributionsAD = "0.6.55"
ExplicitImports = "1.9"
Flux = "0.14.15"
ForwardDiff = "0.10"
Expand Down Expand Up @@ -71,12 +75,15 @@ julia = "1.10"
Aqua = "4c88cf16-eb10-579e-8560-4a9242c79595"
BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
ComponentArrays = "b0b7db55-cfe3-40fc-9ded-d10e2dbeff66"
DataInterpolations = "82cc6244-b520-54b8-b5a6-8a565e85f1d0"
DelayDiffEq = "bcd4f6db-9728-5f36-b5f7-82caef46ccdb"
DiffEqCallbacks = "459566f4-90b8-5000-8ac3-15dfb0a30def"
Distances = "b4f34e82-e78d-54a5-968a-f98e89d6e8f7"
Distributed = "8ba89e20-285c-5b6f-9357-94700520ee1b"
DistributionsAD = "ced4e74d-a319-5a8a-b0ac-84af2272839c"
ExplicitImports = "7d51a73a-1435-4ff3-83d9-f097790105c7"
Flux = "587475ba-b771-5e3f-ad9e-33799f191a9c"
ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210"
Hwloc = "0e44f5e4-bd66-52a0-8798-143a42290a1d"
InteractiveUtils = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
LuxCUDA = "d0bbae9a-e099-4d5b-a835-1c6931763bda"
Expand All @@ -95,6 +102,7 @@ Reexport = "189a3867-3050-52da-a836-e630ba90ab69"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
StochasticDiffEq = "789caeaf-c7a9-5a7d-9973-96adeb23e2a0"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"

[targets]
test = ["Aqua", "BenchmarkTools", "ComponentArrays", "DelayDiffEq", "DiffEqCallbacks", "Distances", "Distributed", "ExplicitImports", "Flux", "Hwloc", "InteractiveUtils", "LuxCUDA", "MLDatasets", "NNlib", "OneHotArrays", "Optimisers", "Optimization", "OptimizationOptimJL", "OptimizationOptimisers", "OrdinaryDiffEq", "Printf", "Random", "ReTestItems", "Reexport", "Statistics", "StochasticDiffEq", "Test"]
test = ["Aqua", "BenchmarkTools", "ComponentArrays", "DataInterpolations", "DelayDiffEq", "DiffEqCallbacks", "Distances", "Distributed", "DistributionsAD", "ExplicitImports", "ForwardDiff", "Flux", "Hwloc", "InteractiveUtils", "LuxCUDA", "MLDatasets", "NNlib", "OneHotArrays", "Optimisers", "Optimization", "OptimizationOptimJL", "OptimizationOptimisers", "OrdinaryDiffEq", "Printf", "Random", "ReTestItems", "Reexport", "Statistics", "StochasticDiffEq", "Test", "Zygote"]
14 changes: 12 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ by helping users put diffeq solvers into neural networks. This package utilizes
[Scientific Machine Learning](https://www.stochasticlifestyle.com/the-essential-tools-of-scientific-machine-learning-scientific-ml/), specifically neural differential equations to add physical information into traditional machine learning.

> [!NOTE]
> We maintain backwards compatibility with [Flux.jl](https://docs.sciml.ai/Flux/stable/) via [FromFluxAdaptor()](https://lux.csail.mit.edu/stable/api/Lux/interop#Lux.FromFluxAdaptor)
> We maintain backwards compatibility with [Flux.jl](https://fluxml.ai/Flux.jl/stable/) via [FromFluxAdaptor()](https://lux.csail.mit.edu/stable/api/Lux/interop#Lux.FromFluxAdaptor)

## Tutorials and Documentation

Expand Down Expand Up @@ -61,7 +61,17 @@ explore various ways to integrate the two methodologies:

![Flux ODE Training Animation](https://user-images.githubusercontent.com/1814174/88589293-e8207f80-d026-11ea-86e2-8a3feb8252ca.gif)

## Breaking Changes in v3
## Breaking Changes

### v4 (upcoming)

- `TensorLayer` has been removed, use `Boltz.Layers.TensorProductLayer` instead.
- Basis functions in DiffEqFlux have been removed in favor of `Boltz.Basis` module.
- `SplineLayer` has been removed, use `Boltz.Layers.SplineLayer` instead.
- `NeuralHamiltonianDE` has been removed, use `NeuralODE` with `Layers.HamiltonianNN` instead.
- `HamiltonianNN` has been removed in favor of `Layers.HamiltonianNN`.

### v3

- Flux dependency is dropped. If a non Lux `AbstractExplicitLayer` is passed we try to automatically convert it to a Lux model with `FromFluxAdaptor()(model)`.
- `Flux` is no longer re-exported from `DiffEqFlux`. Instead we reexport `Lux`.
Expand Down
4 changes: 0 additions & 4 deletions docs/pages.jl
Original file line number Diff line number Diff line change
Expand Up @@ -18,12 +18,8 @@ pages = [
"examples/physical_constraints.md",
],
"Layer APIs" => Any[
"Classical Basis Layers" => "layers/BasisLayers.md",
"Tensor Product Layer" => "layers/TensorLayer.md",
"Continuous Normalizing Flows Layer" => "layers/CNFLayer.md",
"Spline Layer" => "layers/SplineLayer.md",
"Neural Differential Equation Layers" => "layers/NeuralDELayers.md",
"Hamiltonian Neural Network Layer" => "layers/HamiltonianNN.md"
],
"Utility Function APIs" => Any[
"Smoothed Collocation" => "utilities/Collocation.md",
Expand Down
3 changes: 1 addition & 2 deletions docs/src/examples/mnist_conv_neural_ode.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ ENV["DATADEPS_ALWAYS_ACCEPT"] = true

function loadmnist(batchsize)
# Load MNIST
dataset = MNIST(; split = :train)
dataset = MNIST(; split = :train)[1:2000] # Partial load for demonstration
imgs = dataset.features
labels_raw = dataset.targets

Expand Down Expand Up @@ -114,6 +114,5 @@ end
# Train the NN-ODE and monitor the loss and weights.
res = Optimization.solve(opt_prob, opt, dataloader; maxiters = 5, callback)
acc = accuracy(m, dataloader, res.u, st)
@assert acc > 0.8 # hide
acc # hide
```
16 changes: 10 additions & 6 deletions docs/src/examples/mnist_neural_ode.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ logitcrossentropy = CrossEntropyLoss(; logits = Val(true))

function loadmnist(batchsize)
# Load MNIST
dataset = MNIST(; split = :train)
dataset = MNIST(; split = :train)[1:2000] # Partial load for demonstration
imgs = dataset.features
labels_raw = dataset.targets

Expand Down Expand Up @@ -104,7 +104,7 @@ end

# Train the NN-ODE and monitor the loss and weights.
res = Optimization.solve(opt_prob, opt, dataloader; callback, maxiters = 5)
@assert accuracy(m, dataloader, res.u, st) > 0.8
accuracy(m, dataloader, res.u, st)
```

## Step-by-Step Description
Expand Down Expand Up @@ -151,7 +151,7 @@ logitcrossentropy = CrossEntropyLoss(; logits = Val(true))

function loadmnist(batchsize)
# Load MNIST
dataset = MNIST(; split = :train)
dataset = MNIST(; split = :train)[1:2000] # Partial load for demonstration
imgs = dataset.features
labels_raw = dataset.targets

Expand Down Expand Up @@ -221,6 +221,12 @@ st = st |> gdev;
```

```@example mnist
# We can also build the model topology without a NN-ODE
m_no_ode = Chain(; down, nn, fc)
ps_no_ode, st_no_ode = Lux.setup(Xoshiro(0), m_no_ode);
ps_no_ode = ComponentArray(ps_no_ode) |> gdev;
st_no_ode = st_no_ode |> gdev;

x_train1, y_train1 = first(dataloader)

# To understand the intermediate NN-ODE layer, we can examine it's dimensionality
Expand Down Expand Up @@ -324,7 +330,5 @@ for Neural ODE is given by `nn_ode.p`:
```@example mnist
# Train the NN-ODE and monitor the loss and weights.
res = Optimization.solve(opt_prob, opt, dataloader; callback, maxiters = 5)
acc = accuracy(m, dataloader, res.u, st)
@assert acc > 0.8 # hide
acc # hide
accuracy(m, dataloader, res.u, st)
```
2 changes: 1 addition & 1 deletion docs/src/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ and helper functions to make training such deep implicit layer models fast and e
The approach of this package is the easy and efficient training of
[Neural Ordinary Differential Equations](https://arxiv.org/abs/1806.07366) and its variants.
DiffEqFlux.jl provides architectures which match the interfaces of
machine learning libraries such as [Flux.jl](https://docs.sciml.ai/Flux/stable/)
machine learning libraries such as [Flux.jl](https://fluxml.ai/Flux.jl/stable/)
and [Lux.jl](https://lux.csail.mit.edu/stable/)
to make it easy to build continuous-time machine learning layers
into larger machine learning applications.
Expand Down
12 changes: 0 additions & 12 deletions docs/src/layers/BasisLayers.md

This file was deleted.

9 changes: 0 additions & 9 deletions docs/src/layers/HamiltonianNN.md

This file was deleted.

5 changes: 0 additions & 5 deletions docs/src/layers/SplineLayer.md

This file was deleted.

5 changes: 0 additions & 5 deletions docs/src/layers/TensorLayer.md

This file was deleted.

19 changes: 19 additions & 0 deletions ext/DiffEqFluxDataInterpolationsExt.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
module DiffEqFluxDataInterpolationsExt

using DataInterpolations: DataInterpolations
using DiffEqFlux: DiffEqFlux

@views function DiffEqFlux.collocate_data(
data::AbstractMatrix{T}, tpoints::AbstractVector{T},
tpoints_sample::AbstractVector{T}, interp, args...) where {T}
u = zeros(T, size(data, 1), length(tpoints_sample))
du = zeros(T, size(data, 1), length(tpoints_sample))
for d1 in axes(data, 1)
interpolation = interp(data[d1, :], tpoints, args...)
u[d1, :] .= interpolation.(tpoints_sample)
du[d1, :] .= DataInterpolations.derivative.((interpolation,), tpoints_sample)
end
return du, u
end

end
20 changes: 8 additions & 12 deletions src/DiffEqFlux.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,10 +3,7 @@ module DiffEqFlux
using ADTypes: ADTypes, AutoForwardDiff, AutoZygote
using ChainRulesCore: ChainRulesCore
using ConcreteStructs: @concrete
using DataInterpolations: DataInterpolations
using Distributions: Distributions, ContinuousMultivariateDistribution, Distribution, logpdf
using DistributionsAD: DistributionsAD
using ForwardDiff: ForwardDiff
using LinearAlgebra: LinearAlgebra, Diagonal, det, tr, mul!
using Lux: Lux, Chain, Dense, StatefulLuxLayer, FromFluxAdaptor
using LuxCore: LuxCore, AbstractExplicitLayer, AbstractExplicitContainerLayer
Expand All @@ -23,26 +20,25 @@ using SciMLSensitivity: SciMLSensitivity, AdjointLSS, BacksolveAdjoint, EnzymeVJ
SteadyStateAdjoint, TrackerAdjoint, TrackerVJP, ZygoteAdjoint,
ZygoteVJP
using Setfield: @set!
using Zygote: Zygote

const CRC = ChainRulesCore

@reexport using ADTypes, Lux
@reexport using ADTypes, Lux, Boltz

fixed_state_type(_) = true
fixed_state_type(::Layers.HamiltonianNN{FST}) where {FST} = FST

include("ffjord.jl")
include("neural_de.jl")
include("spline_layer.jl")
include("tensor_product.jl")

include("collocation.jl")
include("hnn.jl")
include("multiple_shooting.jl")

include("deprecated.jl")

export NeuralODE, NeuralDSDE, NeuralSDE, NeuralCDDE, NeuralDAE, AugmentedNDELayer,
NeuralODEMM, TensorLayer, SplineLayer
export NeuralHamiltonianDE, HamiltonianNN
NeuralODEMM
export FFJORD, FFJORDDistribution
export TensorProductBasisFunction, ChebyshevBasis, SinBasis, CosBasis, FourierBasis,
LegendreBasis, PolynomialBasis
export DimMover

export EpanechnikovKernel, UniformKernel, TriangularKernel, QuarticKernel, TriweightKernel,
Expand Down
12 changes: 0 additions & 12 deletions src/collocation.jl
Original file line number Diff line number Diff line change
Expand Up @@ -106,15 +106,3 @@ end
du, u = collocate_data(reshape(data, 1, :), tpoints, tpoints_sample, interp, args...)
return du[1, :], u[1, :]
end

@views function collocate_data(data::AbstractMatrix{T}, tpoints::AbstractVector{T},
tpoints_sample::AbstractVector{T}, interp, args...) where {T}
u = zeros(T, size(data, 1), length(tpoints_sample))
du = zeros(T, size(data, 1), length(tpoints_sample))
for d1 in axes(data, 1)
interpolation = interp(data[d1, :], tpoints, args...)
u[d1, :] .= interpolation.(tpoints_sample)
du[d1, :] .= DataInterpolations.derivative.((interpolation,), tpoints_sample)
end
return du, u
end
47 changes: 47 additions & 0 deletions src/deprecated.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
# Tensor Layer
Base.@deprecate TensorProductBasisFunction(f, n) Basis.GeneralBasisFunction{:none}(f, n, 1)

for B in (:Chebyshev, :Sin, :Cos, :Fourier, :Legendre, :Polynomial)
Bold = Symbol(B, :Basis)
@eval Base.@deprecate $(Bold)(n) Basis.$(B)(n)
end

Base.@deprecate TensorLayer(model, out_dim::Int, init_p::F = randn) where {F <: Function} Boltz.Layers.TensorProductLayer(
model, out_dim; init_weight = init_p)

# Spline Layer
function SplineLayer(tspan, tstep, spline_basis; init_saved_points::F = nothing) where {F}
Base.depwarn(
"SplineLayer is deprecated and will be removed in the next major release. Refer to \
Boltz.jl `Layers.SplineLayer` for the newer version.",
:SplineLayer)

init_saved_points_corrected = if init_saved_points === nothing
nothing
else
let init_saved_points = init_saved_points
(rng, _, grid_min, grid_max, grid_step) -> begin
return init_saved_points(rng, (grid_min, grid_max), grid_step)
end
end
end

return Layers.SplineLayer((), first(tspan), last(tspan), tstep, spline_basis;
init_saved_points = init_saved_points_corrected)
end

export SplineLayer

# Hamiltonian Neural Network
Base.@deprecate HamiltonianNN(model; ad = AutoZygote()) Layers.HamiltonianNN{true}(
model; autodiff = ad)

function NeuralHamiltonianDE(model, tspan, args...; ad = AutoForwardDiff(), kwargs...)
Base.depwarn(
"NeuralHamiltonianDE is deprecated, use `NeuralODE` with `Layers.HamiltonianNN` instead.",
:NeuralHamiltonianDE)
hnn = model isa Layers.HamiltonianNN ? model : HamiltonianNN(model; ad)
return NeuralODE(hnn, tspan, args, kwargs)
end

export NeuralHamiltonianDE
2 changes: 1 addition & 1 deletion src/ffjord.jl
Original file line number Diff line number Diff line change
Expand Up @@ -132,7 +132,7 @@ function __forward_ffjord(n::FFJORD, x::AbstractArray{T, N}, ps, st) where {T, N
(; regularize, monte_carlo) = st
sensealg = InterpolatingAdjoint(; autojacvec = ZygoteVJP())

model = StatefulLuxLayer{true}(n.model, nothing, st.model)
model = StatefulLuxLayer{fixed_state_type(n.model)}(n.model, nothing, st.model)

ffjord(u, p, t) = __ffjord(model, u, p, n.ad, regularize, monte_carlo)

Expand Down
Loading
Loading