-
-
Notifications
You must be signed in to change notification settings - Fork 154
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Remove type promotion in FFJORD #633
Merged
Merged
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Also, this PR changes the error in #615 to this: regularize=false & monte_carlo=false: Error During Test at /home/runner/work/DiffEqFlux.jl/DiffEqFlux.jl/test/cnf_test.jl:71
Test threw exception
Expression: !(isnothing(DiffEqFlux.sciml_train((θ->begin
loss(θ; regularize, monte_carlo)
end), ffjord_mdl.p, ADAM(0.1), adtype; cb, maxiters = 10)))
DimensionMismatch("arrays could not be broadcast to a common size; got a dimension with lengths 5 and 6")
Stacktrace:
[1] _bcs1
@ ./broadcast.jl:501 [inlined]
[2] _bcs
@ ./broadcast.jl:495 [inlined]
[3] broadcast_shape(::Tuple{Base.OneTo{Int64}}, ::Tuple{Base.OneTo{Int64}})
@ Base.Broadcast ./broadcast.jl:489
[4] combine_axes
@ ./broadcast.jl:484 [inlined]
[5] _axes
@ ./broadcast.jl:209 [inlined]
[6] axes
@ ./broadcast.jl:207 [inlined]
[7] copy(bc::Base.Broadcast.Broadcasted{Base.Broadcast.Style{Tuple}, Nothing, typeof(ReverseDiff._add_to_deriv!), Tuple{Tuple{ODEProblem{Matrix{Float64}, Tuple{Float32, Float32}, false, ReverseDiff.TrackedArray{Float32, Float32, 1, Vector{Float32}, Vector{Float32}}, ODEFunction{false, DiffEqFlux.var"#ffjord_#61"{Bool, Bool, FFJORD{Chain{Tuple{Dense{typeof(tanh), Matrix{Float32}, Vector{Float32}}}}, Vector{Float32}, Flux.var"#60#62"{Chain{Tuple{Dense{typeof(tanh), Matrix{Float32}, Vector{Float32}}}}}, Distributions.MvNormal{Float32, PDMats.PDiagMat{Float32, Vector{Float32}}, Vector{Float32}}, Tuple{Float32, Float32}, Tuple{OrdinaryDiffEq.Tsit5}, Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}}, Matrix{Float64}}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing}, Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}, InterpolatingAdjoint{0, true, Val{:central}, Bool, Bool}, Matrix{Float64}, ReverseDiff.TrackedArray{Float32, Float32, 1, Vector{Float32}, Vector{Float32}}, OrdinaryDiffEq.Tsit5}, Tuple{ChainRulesCore.NoTangent, ChainRulesCore.NoTangent, ChainRulesCore.NoTangent, Matrix{Float64}, Vector{Float64}, ChainRulesCore.NoTangent}}})
@ Base.Broadcast ./broadcast.jl:1095
[8] materialize
@ ./broadcast.jl:883 [inlined]
[9] special_reverse_exec!(instruction::ReverseDiff.SpecialInstruction{typeof(DiffEqBase.solve_up), Tuple{ODEProblem{Matrix{Float64}, Tuple{Float32, Float32}, false, ReverseDiff.TrackedArray{Float32, Float32, 1, Vector{Float32}, Vector{Float32}}, ODEFunction{false, DiffEqFlux.var"#ffjord_#61"{Bool, Bool, FFJORD{Chain{Tuple{Dense{typeof(tanh), Matrix{Float32}, Vector{Float32}}}}, Vector{Float32}, Flux.var"#60#62"{Chain{Tuple{Dense{typeof(tanh), Matrix{Float32}, Vector{Float32}}}}}, Distributions.MvNormal{Float32, PDMats.PDiagMat{Float32, Vector{Float32}}, Vector{Float32}}, Tuple{Float32, Float32}, Tuple{OrdinaryDiffEq.Tsit5}, Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}}, Matrix{Float64}}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing}, Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}, InterpolatingAdjoint{0, true, Val{:central}, Bool, Bool}, Matrix{Float64}, ReverseDiff.TrackedArray{Float32, Float32, 1, Vector{Float32}, Vector{Float32}}, OrdinaryDiffEq.Tsit5}, ReverseDiff.TrackedArray{Float64, Float64, 3, Array{Float64, 3}, Array{Float64, 3}}, Tuple{DiffEqSensitivity.var"#adjoint_sensitivity_backpass#216"{Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, OrdinaryDiffEq.Tsit5, InterpolatingAdjoint{0, true, Val{:central}, Bool, Bool}, Matrix{Float64}, Vector{Float32}, Tuple{}, Colon, NamedTuple{(), Tuple{}}}, DiffEqBase.var"##solve_up#286#204"{DiffEqBase.var"##solve_up#286#203#205"}, NamedTuple{(), Tuple{}}}})
@ DiffEqBase ~/.julia/packages/ReverseDiff/E4Tzn/src/macros.jl:218
[10] reverse_exec!(instruction::ReverseDiff.SpecialInstruction{typeof(DiffEqBase.solve_up), Tuple{ODEProblem{Matrix{Float64}, Tuple{Float32, Float32}, false, ReverseDiff.TrackedArray{Float32, Float32, 1, Vector{Float32}, Vector{Float32}}, ODEFunction{false, DiffEqFlux.var"#ffjord_#61"{Bool, Bool, FFJORD{Chain{Tuple{Dense{typeof(tanh), Matrix{Float32}, Vector{Float32}}}}, Vector{Float32}, Flux.var"#60#62"{Chain{Tuple{Dense{typeof(tanh), Matrix{Float32}, Vector{Float32}}}}}, Distributions.MvNormal{Float32, PDMats.PDiagMat{Float32, Vector{Float32}}, Vector{Float32}}, Tuple{Float32, Float32}, Tuple{OrdinaryDiffEq.Tsit5}, Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}}, Matrix{Float64}}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing}, Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}, InterpolatingAdjoint{0, true, Val{:central}, Bool, Bool}, Matrix{Float64}, ReverseDiff.TrackedArray{Float32, Float32, 1, Vector{Float32}, Vector{Float32}}, OrdinaryDiffEq.Tsit5}, ReverseDiff.TrackedArray{Float64, Float64, 3, Array{Float64, 3}, Array{Float64, 3}}, Tuple{DiffEqSensitivity.var"#adjoint_sensitivity_backpass#216"{Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, OrdinaryDiffEq.Tsit5, InterpolatingAdjoint{0, true, Val{:central}, Bool, Bool}, Matrix{Float64}, Vector{Float32}, Tuple{}, Colon, NamedTuple{(), Tuple{}}}, DiffEqBase.var"##solve_up#286#204"{DiffEqBase.var"##solve_up#286#203#205"}, NamedTuple{(), Tuple{}}}})
@ ReverseDiff ~/.julia/packages/ReverseDiff/E4Tzn/src/tape.jl:93
[11] reverse_pass!(tape::Vector{ReverseDiff.AbstractInstruction})
@ ReverseDiff ~/.julia/packages/ReverseDiff/E4Tzn/src/tape.jl:87
[12] reverse_pass!
@ ~/.julia/packages/ReverseDiff/E4Tzn/src/api/tape.jl:36 [inlined]
[13] seeded_reverse_pass!(result::Vector{Float32}, output::ReverseDiff.TrackedReal{Float64, Float64, Nothing}, input::ReverseDiff.TrackedArray{Float32, Float32, 1, Vector{Float32}, Vector{Float32}}, tape::ReverseDiff.GradientTape{GalacticOptim.var"#192#201"{Tuple{}, GalacticOptim.var"#190#199"{OptimizationFunction{true, GalacticOptim.AutoReverseDiff, DiffEqFlux.var"#82#87"{Main.##345.var"#6#28"{Bool, Bool}}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, Nothing}}, ReverseDiff.TrackedArray{Float32, Float32, 1, Vector{Float32}, Vector{Float32}}, ReverseDiff.TrackedReal{Float64, Float64, Nothing}})
@ ReverseDiff ~/.julia/packages/ReverseDiff/E4Tzn/src/api/utils.jl:31
[14] seeded_reverse_pass!(result::Vector{Float32}, t::ReverseDiff.GradientTape{GalacticOptim.var"#192#201"{Tuple{}, GalacticOptim.var"#190#199"{OptimizationFunction{true, GalacticOptim.AutoReverseDiff, DiffEqFlux.var"#82#87"{Main.##345.var"#6#28"{Bool, Bool}}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, Nothing}}, ReverseDiff.TrackedArray{Float32, Float32, 1, Vector{Float32}, Vector{Float32}}, ReverseDiff.TrackedReal{Float64, Float64, Nothing}})
@ ReverseDiff ~/.julia/packages/ReverseDiff/E4Tzn/src/api/tape.jl:47
[15] gradient!(result::Vector{Float32}, f::Function, input::Vector{Float32}, cfg::ReverseDiff.GradientConfig{ReverseDiff.TrackedArray{Float32, Float32, 1, Vector{Float32}, Vector{Float32}}})
@ ReverseDiff ~/.julia/packages/ReverseDiff/E4Tzn/src/api/gradients.jl:42
[16] (::GalacticOptim.var"#191#200"{GalacticOptim.var"#190#199"{OptimizationFunction{true, GalacticOptim.AutoReverseDiff, DiffEqFlux.var"#82#87"{Main.##345.var"#6#28"{Bool, Bool}}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, Nothing}})(::Vector{Float32}, ::Vector{Float32})
@ GalacticOptim ~/.julia/packages/GalacticOptim/bEh06/src/function/reversediff.jl:9
[17] macro expansion
@ ~/.julia/packages/GalacticOptim/bEh06/src/solve/flux.jl:43 [inlined]
[18] macro expansion
@ ~/.julia/packages/GalacticOptim/bEh06/src/solve/solve.jl:35 [inlined]
[19] __solve(prob::OptimizationProblem{false, OptimizationFunction{false, GalacticOptim.AutoReverseDiff, OptimizationFunction{true, GalacticOptim.AutoReverseDiff, DiffEqFlux.var"#82#87"{Main.##345.var"#6#28"{Bool, Bool}}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, GalacticOptim.var"#191#200"{GalacticOptim.var"#190#199"{OptimizationFunction{true, GalacticOptim.AutoReverseDiff, DiffEqFlux.var"#82#87"{Main.##345.var"#6#28"{Bool, Bool}}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, Nothing}}, GalacticOptim.var"#193#202"{GalacticOptim.var"#190#199"{OptimizationFunction{true, GalacticOptim.AutoReverseDiff, DiffEqFlux.var"#82#87"{Main.##345.var"#6#28"{Bool, Bool}}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, Nothing}}, GalacticOptim.var"#198#207", Nothing, Nothing, Nothing}, Vector{Float32}, SciMLBase.NullParameters, Nothing, Nothing, Nothing, Nothing, Base.Iterators.Pairs{Symbol, typeof(Main.##345.cb), Tuple{Symbol}, NamedTuple{(:cb,), Tuple{typeof(Main.##345.cb)}}}}, opt::ADAM, data::Base.Iterators.Cycle{Tuple{GalacticOptim.NullData}}; maxiters::Int64, cb::Function, progress::Bool, save_best::Bool, kwargs::Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}})
@ GalacticOptim ~/.julia/packages/GalacticOptim/bEh06/src/solve/flux.jl:41
[20] #solve#476
@ ~/.julia/packages/SciMLBase/n3U0M/src/solve.jl:3 [inlined]
[21] sciml_train(::Main.##345.var"#6#28"{Bool, Bool}, ::Vector{Float32}, ::ADAM, ::GalacticOptim.AutoReverseDiff; lower_bounds::Nothing, upper_bounds::Nothing, maxiters::Int64, kwargs::Base.Iterators.Pairs{Symbol, typeof(Main.##345.cb), Tuple{Symbol}, NamedTuple{(:cb,), Tuple{typeof(Main.##345.cb)}}})
@ DiffEqFlux ~/work/DiffEqFlux.jl/DiffEqFlux.jl/src/train.jl:89
[22] macro expansion
@ ~/work/DiffEqFlux.jl/DiffEqFlux.jl/test/cnf_test.jl:71 [inlined]
[23] macro expansion
@ /buildworker/worker/package_linux64/build/usr/share/julia/stdlib/v1.6/Test/src/Test.jl:1151 [inlined]
[24] macro expansion
@ ~/work/DiffEqFlux.jl/DiffEqFlux.jl/test/cnf_test.jl:68 [inlined]
[25] macro expansion
@ /buildworker/worker/package_linux64/build/usr/share/julia/stdlib/v1.6/Test/src/Test.jl:1151 [inlined]
[26] macro expansion
@ ~/work/DiffEqFlux.jl/DiffEqFlux.jl/test/cnf_test.jl:65 [inlined]
[27] macro expansion
@ /buildworker/worker/package_linux64/build/usr/share/julia/stdlib/v1.6/Test/src/Test.jl:1151 [inlined]
[28] top-level scope
@ ~/work/DiffEqFlux.jl/DiffEqFlux.jl/test/cnf_test.jl:22 |
The error looks similar to the Tracker issue (#624): DimensionMismatch("array could not be broadcast to match destination") |
Thanks! |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
I tried to fix the ReverseDiff issue (#615) with FFJORD by removing the type promotion, but questionably it fixed the ForwardDiff issue (#610).
Now, output type of ffjord is as input type because of #617, I guess. So we don't need to promote the output of
logpdf
anymore.Fixes #610