Skip to content

SCIInstitute/DiffractionClassification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

README.txt

####Welcome to the DeepdiveCrystallography diffraction classification web service

###Quickstart Guide:

prerequisites: python 3.6 and an internet connection

To predict the crystal structure simply start the Diffraction Classifier by
running the command:

python DiffractionClassifier.py

Then follow the series of prompts.

Advanced usage:
	You can specify the data you'd like to load by adding --filepath FILEPATH_TO_YOUR_DATA
	to the function call.

	Similarly you specify the calibration by modifying the calibration.json file and adding --calibration calibration.json to the 
	function call.

### Acknowledgements

Work supported through the INL Laboratory Directed Research& Development (LDRD) Program under DOE Idaho Operations Office Contract DE-AC07-05ID145142. Thanks to Ian Harvey for many useful discussions and contributions to this work.


### Citations

- J. A. Aguiar, M. L. Gong, R. R. Unocic, T. Tasdizen, & B. D. Miller.  Decoding Crystallography from High-Resolution Electron Imaging and Diffraction Datasets with Deep Learning. Sci. Adv. aaw1949 (2019).

- J. A. Aguiar, M. L. Gong & T. Tasdizen. Crystallographic prediction from diffraction and chemistry data for higher throughput classification using machine learning. Comput. Mater. Sci. 173, 109409 (2020).


About

An open service to classify diffraction patterns

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages