Skip to content

Commit

Permalink
[ADD] add transformer_int4_fp16_loadlowbit_gpu_win api (intel-analy…
Browse files Browse the repository at this point in the history
…tics#11511)

* [ADD] add transformer_int4_fp16_loadlowbit_gpu_win api

* [UPDATE] add int4_fp16_lowbit config and description

* [FIX] fix run.py mistake

* [FIX] fix run.py mistake

* [FIX] fix indent; change dtype=float16 to model.half()
  • Loading branch information
ACupofAir authored and MeouSker77 committed Jul 19, 2024
1 parent fa9eab0 commit 5e61a08
Show file tree
Hide file tree
Showing 3 changed files with 111 additions and 2 deletions.
3 changes: 2 additions & 1 deletion python/llm/dev/benchmark/all-in-one/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,7 @@ test_api:
# - "transformer_int4_gpu" # on Intel GPU, transformer-like API, (qtype=int4), (dtype=fp32)
# - "transformer_int4_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp32)
# - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), use load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
# - "transformer_int4_fp16_loadlowbit_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp16), use load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
# - "bigdl_fp16_gpu" # on Intel GPU, use ipex-llm transformers API, (dtype=fp16), (qtype=fp16)
# - "optimize_model_gpu" # on Intel GPU, can optimize any pytorch models include transformer model
# - "deepspeed_optimize_model_gpu" # on Intel GPU, deepspeed autotp inference
Expand All @@ -64,7 +65,7 @@ task: 'continuation' # task can be 'continuation', 'QA' and 'summarize'
```
## (Optional) Save model in low bit
If you choose the `transformer_int4_loadlowbit_gpu_win` test API, you will need to save the model in low bit first.
If you choose the `transformer_int4_loadlowbit_gpu_win` or `transformer_int4_fp16_loadlowbit_gpu_win` test API, you will need to save the model in low bit first.

Run `python save.py` will save all models declared in `repo_id` list into low bit models under `local_model_hub` folder.

Expand Down
1 change: 1 addition & 0 deletions python/llm/dev/benchmark/all-in-one/config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@ test_api:
# - "transformer_int4_gpu" # on Intel GPU, transformer-like API, (qtype=int4), (dtype=fp32)
# - "transformer_int4_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp32)
# - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), use load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
# - "transformer_int4_fp16_loadlowbit_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp16), use load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
# - "bigdl_fp16_gpu" # on Intel GPU, use ipex-llm transformers API, (dtype=fp16), (qtype=fp16)
# - "optimize_model_gpu" # on Intel GPU, can optimize any pytorch models include transformer model
# - "deepspeed_optimize_model_gpu" # on Intel GPU, deepspeed autotp inference
Expand Down
109 changes: 108 additions & 1 deletion python/llm/dev/benchmark/all-in-one/run.py
Original file line number Diff line number Diff line change
Expand Up @@ -137,6 +137,10 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
# drop the results of the first time for better performance
run_transformer_int4_loadlowbit_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size, streaming)
result = run_transformer_int4_loadlowbit_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size, streaming)
elif test_api == 'transformer_int4_fp16_loadlowbit_gpu_win':
# drop the results of the first time for better performance
run_transformer_int4_fp16_loadlowbit_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size, streaming)
result = run_transformer_int4_fp16_loadlowbit_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size, streaming)
elif test_api == 'transformer_autocast_bf16':
result = run_transformer_autocast_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
elif test_api == 'bigdl_ipex_bf16':
Expand Down Expand Up @@ -170,7 +174,7 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
low_bit,
cpu_embedding,
round(result[in_out_pair][-1][5], 2),
result[in_out_pair][-1][6] if any(keyword in test_api for keyword in ['int4_gpu', 'int4_fp16_gpu_win', 'int4_loadlowbit_gpu', 'fp16_gpu', 'deepspeed_optimize_model_gpu']) and not lookahead else 'N/A',
result[in_out_pair][-1][6] if any(keyword in test_api for keyword in ['int4_gpu', 'int4_fp16_gpu_win', 'int4_loadlowbit_gpu', 'int4_fp16_loadlowbit_gpu', 'fp16_gpu', 'deepspeed_optimize_model_gpu']) and not lookahead else 'N/A',
streaming if 'win' in test_api else 'N/A',
use_fp16_torch_dtype if 'pipeline_parallel_gpu' in test_api else 'N/A'],
)
Expand Down Expand Up @@ -1191,6 +1195,109 @@ def run_transformer_int4_loadlowbit_gpu_win(repo_id,
return result


def run_transformer_int4_fp16_loadlowbit_gpu_win(repo_id,
local_model_hub,
in_out_pairs,
warm_up,
num_trials,
num_beams,
low_bit,
cpu_embedding,
batch_size,
streaming):
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer, TextStreamer
model_path = get_model_path(repo_id, local_model_hub)
# Load BigDL-LLM optimized low bit model
st = time.perf_counter()
if repo_id in CHATGLM_IDS:
model = AutoModel.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
use_cache=True, cpu_embedding=cpu_embedding).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
model = model.half().to('xpu')
elif repo_id in LLAMA_IDS:
model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
use_cache=True, cpu_embedding=cpu_embedding).eval()
tokenizer = LlamaTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
model = model.half().to('xpu')
elif repo_id in LLAVA_IDS:
llava_repo_dir = os.environ.get('LLAVA_REPO_DIR')
sys.path.append(rf"{llava_repo_dir}")
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
use_cache=True, cpu_embedding=cpu_embedding).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
model = model.half().to('xpu')
else:
model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
use_cache=True, cpu_embedding=cpu_embedding).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
model = model.half().to('xpu')
end = time.perf_counter()
load_time = end - st
print(">> loading of model costs {}s and {}GB".format(load_time, torch.xpu.memory.memory_reserved()/(1024**3)))

model = BenchmarkWrapper(model)
streamer = TextStreamer(tokenizer, skip_prompt=True)

result = {}
with torch.inference_mode():
for in_out in in_out_pairs:
try:
in_out_len = in_out.split("-")
in_len = int(in_out_len[0])
out_len = int(in_out_len[1])
# As different tokenizer has different encodings,
# in_len.txt maybe shorter than we need,
# use much longer context to make sure input length
test_length = min(in_len*2, 8192)
while test_length not in [32, 256, 1024, 2048, 8192]:
test_length = test_length * 2
input_str = open(f"prompt/continuation/{test_length}.txt", 'r').read()
# As different tokenizer has different encodings,
# slice the input_ids to ensure the prompt length is required length.
input_ids = tokenizer.encode(input_str, return_tensors="pt")
input_ids = input_ids[:, :in_len]
true_str = tokenizer.batch_decode(input_ids)[0]
input_list = [true_str] * batch_size
input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
actual_in_len = input_ids.shape[1]
result[in_out] = []
for i in range(num_trials + warm_up):
st = time.perf_counter()
if streaming:
output_ids = model.generate(input_ids, do_sample=False,
max_new_tokens=out_len, min_new_tokens=out_len,
num_beams=num_beams, streamer=streamer)
else:
output_ids = model.generate(input_ids, do_sample=False,
max_new_tokens=out_len, min_new_tokens=out_len,
num_beams=num_beams)
torch.xpu.synchronize()
end = time.perf_counter()
output_ids = output_ids.cpu()
print("model generate cost: " + str(end - st))
output = tokenizer.batch_decode(output_ids)
if not streaming:
print(output[0])
actual_out_len = output_ids.shape[1] - actual_in_len
if i >= warm_up:
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
actual_in_len, actual_out_len, load_time, model.peak_memory])
# torch.xpu.empty_cache() # this may make first token slower
except RuntimeError:
traceback.print_exc()
pass
torch.xpu.synchronize()
torch.xpu.empty_cache()
model.to('cpu')
torch.xpu.synchronize()
torch.xpu.empty_cache()
del model
gc.collect()
return result


def run_transformer_autocast_bf16( repo_id,
local_model_hub,
in_out_pairs,
Expand Down

0 comments on commit 5e61a08

Please sign in to comment.