Skip to content

RongqinChen/Redundancy-Free-Graph-Neural-Networks

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Redundancy-Free Graph Neural Networks

Build Experiments Environment

conda create --name rfgnn_env python==3.8 pytorch cudatoolkit=11.3 \
rdkit graph-tool tensorboard dgl-cuda11.3 pip lmdb \
-c pytorch -c conda-forge -c rdkit -c dglteam -y

conda activate rfgnn_env

pip install tqdm ogb lmdb

Compile make_tpf module

bash datautils/transform/make_tpf/build.sh

Usages

GIN-bioinfo datasets (including 'MUTAG', 'NCI1', 'PROTEINS', 'PTC')

python -m runners.rfgnn_tpf_gind_bioinfo $device $num_repeats

TU datasets (including 'ENZYMES', 'BZR', 'COX2', 'DHFR')

python -m runners.rfgnn_tpf_tud $device $num_repeats

QM9 dataset

python -m runners.rfgnn_tpf_qm9 $device $num_repeats $target_idx_begin $target_idx_end

Note that unit conversions should be performed for results to match the units used by [1].

[1]: Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 4602–4609, 2019.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published