Skip to content

ReubenDo/InExtremIS

Repository files navigation

Inter Extreme Points Geodesics for End-to-End Weakly Supervised Image Segmentation

Public PyTorch implementation for our paper Inter Extreme Points Geodesics for End-to-End Weakly Supervised Image Segmentation, which was accepted for presentation at MICCAI 2021.

If you find this code useful for your research, please cite the following paper:

@article{InExtremIS2021Dorent,
         author={Dorent, Reuben and Joutard, Samuel and Shapey, Jonathan and
         Kujawa, Aaron and Modat, Marc and Ourselin, S\'ebastien and Vercauteren, Tom},
         title={Inter Extreme Points Geodesics for End-to-End Weakly Supervised Image Segmentation},
         journal={MICCAI},
         year={2021},
}

Method Overview

We introduce InExtremIS, a weakly supervised 3D approach to train a deep image segmentation network using particularly weak train-time annotations: only 6 extreme clicks at the boundary of the objects of interest. Our fully automatic method is trained end-to-end and does not require any test-time annotations.

Example of weak labels for our use case of Vestibular Schwannoma (VS) segmentation. Magenta: Background. Green: VS:

Virtual Environment Setup

The code is implemented in Python 3.6 using the PyTorch library. Requirements:

  • Set up a virtual environment (e.g. conda or virtualenv) with Python >=3.6.9
  • Install all requirements using:

pip install -r requirements.txt

  • Install the CUDA implementation of the permutohedral lattice and the CRF Loss.
cd ScribbleDA/Permutohedral_attention_module/PAM_cuda/
python3 setup.py build
python3 setup.py install --user

Data

The data and annotations are publicly available. Details are provided in data.

Running the code

train.py is the main file for training the models.

Example 1: Training InExtreMIS with manual extreme points:

python3 train.py \
--model_dir ./models/manual_gradient_eucl_deep_crf/ \
--alpha 15 \
--beta 0.05 \
--weight_crf 0.0001 \
--mode extreme_points \
--label_postfix Extremes_man \
--img_gradient_postfix Sobel_man \
--path_data data/T2/ \
--path_labels data/extreme_points/manual/ \
--with_euclidean \
--with_prob

Example 2: Training InExtreMIS with simulated extreme points:

python3 train.py \
--model_dir ./models/simulated_gradient_eucl_deep_crf/ \
--alpha 15 \
--beta 0.05 \
--weight_crf 0.0001 \
--mode extreme_points \
--label_postfix Extremes \
--img_gradient_postfix Sobel \
--path_data data/T2/ \
--path_labels data/extreme_points/simulated/ \
--with_euclidean \
--with_prob

inference.py is the main file for running the inference:

python3 inference.py \
--model_dir ./models/manual_gradient_eucl_deep_crf/ \
--path_data data/T2/ \

Using the code with your own data

If you want to use your own data, you just need to change the source and target paths, the splits and potentially the modality used.

About

Official PyTorch implementation of InExtremIS

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages