This is a Pytorch implementation of Dist-PU.
GPU:
- Geoforce RTX 3090
- cuda 11.1
OS:
- ubuntu 18.04.5
Python Related:
- python 3.7
- pytorch 1.8.1
- torchvision 0.9.1
- numpy 1.19.2
- sklearn 0.24.1
- Download CIFAR-10 python version (163MB) from http://www.cs.utoronto.ca/~kriz/cifar.html to your machine.
- Decompress the downloaded file cifar-10-python.tar.gz from the first step.
- Usually the second step would result in a new directory like '*/cifar-10-batches-py/' with files in it including:
- data_batch_[1-5]
- test_batch
- batches.meta
- readme.html
python train.py --device GPUID --datapath DATAPATH
@InProceedings{Zhao_2022_CVPR, author = {Zhao, Yunrui and Xu, Qianqian and Jiang, Yangbangyan and Wen, Peisong and Huang, Qingming}, title = {Dist-PU: Positive-Unlabeled Learning From a Label Distribution Perspective}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {14461-14470} }