Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add entities to UserUttered event if they are predicted via a policy #7443

Merged
merged 13 commits into from
Dec 8, 2020
75 changes: 67 additions & 8 deletions rasa/core/policies/ted_policy.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,9 @@
from typing import Any, List, Optional, Text, Dict, Tuple, Union, TYPE_CHECKING

import rasa.utils.io as io_utils
import rasa.core.actions.action
from rasa.nlu.constants import TOKENS_NAMES
from rasa.nlu.extractors.extractor import EntityExtractor
from rasa.nlu.classifiers.diet_classifier import EntityTagSpec
from rasa.shared.core.domain import Domain
from rasa.core.featurizers.tracker_featurizers import (
Expand All @@ -29,6 +32,7 @@
FEATURE_TYPE_SENTENCE,
ENTITY_ATTRIBUTE_TYPE,
ENTITY_TAGS,
EXTRACTOR,
)
from rasa.shared.nlu.interpreter import NaturalLanguageInterpreter
from rasa.core.policies.policy import Policy, PolicyPrediction
Expand Down Expand Up @@ -97,7 +101,8 @@
FEATURIZERS,
ENTITY_RECOGNITION,
)

from rasa.shared.core.events import UserUttered, DefinePrevUserUtteredEntities, Event
from rasa.shared.nlu.training_data.message import Message

if TYPE_CHECKING:
from rasa.shared.nlu.training_data.features import Features
Expand Down Expand Up @@ -280,7 +285,6 @@ def __init__(
**kwargs: Any,
) -> None:
"""Declare instance variables with default values."""

if not featurizer:
featurizer = self._standard_featurizer(max_history)

Expand Down Expand Up @@ -315,7 +319,6 @@ def _load_params(self, **kwargs: Dict[Text, Any]) -> None:

def _create_entity_tag_specs(self) -> List[EntityTagSpec]:
"""Create entity tag specifications with their respective tag id mappings."""

_tag_specs = []

tag_id_index_mapping = self.featurizer.state_featurizer.get_entity_tag_ids()
Expand Down Expand Up @@ -570,6 +573,7 @@ def predict_action_probabilities(
model_data = self._create_model_data(tracker_state_features)

output = self.model.predict(model_data)

# take the last prediction in the sequence
similarities = output["similarities"].numpy()[:, -1, :]
confidences = output["action_scores"].numpy()[:, -1, :]
Expand All @@ -579,10 +583,54 @@ def predict_action_probabilities(
if self.config[LOSS_TYPE] == SOFTMAX and self.config[RANKING_LENGTH] > 0:
confidence = train_utils.normalize(confidence, self.config[RANKING_LENGTH])

optional_events = self._create_optional_event_for_entities(
output, interpreter, tracker
)

return self._prediction(
confidence.tolist(), is_end_to_end_prediction=is_e2e_prediction
confidence.tolist(),
is_end_to_end_prediction=is_e2e_prediction,
optional_events=optional_events,
)

def _create_optional_event_for_entities(
self,
output: Dict[Text, tf.Tensor],
tabergma marked this conversation as resolved.
Show resolved Hide resolved
interpreter: NaturalLanguageInterpreter,
tracker: DialogueStateTracker,
) -> Optional[List[Event]]:
if not self.config[ENTITY_RECOGNITION]:
# entity recognition is not turned on, no entities can be predicted
return None

(
predicted_tags,
confidence_values,
) = rasa.utils.train_utils.entity_label_to_tags(output, self._entity_tag_specs)

if ENTITY_ATTRIBUTE_TYPE not in predicted_tags:
# no entities detected
return None

# find last user uttered event as the predicted entities belong to
# that utterance
user_utterances = [e for e in tracker.events if isinstance(e, UserUttered)]
last_user_utterance = user_utterances[-1]
tabergma marked this conversation as resolved.
Show resolved Hide resolved

# convert the predicted tags to actual entities
text = last_user_utterance.text
parsed_message = interpreter.featurize_message(Message(data={TEXT: text}))
tokens = parsed_message.get(TOKENS_NAMES[TEXT])
entities = EntityExtractor.convert_predictions_into_entities(
text, tokens, predicted_tags, confidences=confidence_values
)
tabergma marked this conversation as resolved.
Show resolved Hide resolved

# add the extractor name
for entity in entities:
entity[EXTRACTOR] = "TEDPolicy"

return [DefinePrevUserUtteredEntities(entities)]

def persist(self, path: Union[Text, Path]) -> None:
"""Persists the policy to a storage."""
if self.model is None:
Expand Down Expand Up @@ -635,6 +683,7 @@ def persist(self, path: Union[Text, Path]) -> None:
@classmethod
def load(cls, path: Union[Text, Path]) -> "TEDPolicy":
"""Loads a policy from the storage.

**Needs to load its featurizer**
"""
model_path = Path(path)
Expand Down Expand Up @@ -733,6 +782,15 @@ def __init__(
label_data: RasaModelData,
entity_tag_specs: Optional[List[EntityTagSpec]],
) -> None:
"""Intializes the TED model.

Args:
data_signature: the data signature of the input data
config: the model configuration
use_only_last_dialogue_turns: if 'True' only the last dialogue turn will be used
label_data: the label data
entity_tag_specs: the entity tag specifications
"""
super().__init__("TED", config, data_signature, label_data)

self.use_only_last_dialogue_turns = use_only_last_dialogue_turns
Expand Down Expand Up @@ -817,9 +875,10 @@ def _prepare_layers(self) -> None:
def _prepare_sparse_dense_layer_for(
self, name: Text, signature: Dict[Text, Dict[Text, List[FeatureSignature]]]
) -> None:
"""Prepare the sparse dense layer for the given attribute name. It is used to
combine the sparse and dense features of the attribute at the beginning of
the model.
"""Prepares the sparse dense layer for the given attribute name.

It is used to combine the sparse and dense features of the attribute at the
beginning of the model.

Args:
name: the attribute name
Expand Down Expand Up @@ -1210,7 +1269,6 @@ def _convert_to_original_shape(
Returns:
The converted attribute features
"""

# in order to convert the attribute features with shape
# (combined batch-size and dialogue length x 1 x units)
# to a shape of (batch-size x dialogue length x units)
Expand Down Expand Up @@ -1525,6 +1583,7 @@ def batch_loss(
# ---PREDICTION---

def prepare_for_predict(self) -> None:
"""Prepares the model for prediction."""
_, self.all_labels_embed = self._create_all_labels_embed()

def batch_predict(
Expand Down
32 changes: 3 additions & 29 deletions rasa/nlu/classifiers/diet_classifier.py
Original file line number Diff line number Diff line change
Expand Up @@ -500,7 +500,6 @@ def _extract_features(

def _check_input_dimension_consistency(self, model_data: RasaModelData) -> None:
"""Checks if features have same dimensionality if hidden layers are shared."""

if self.component_config.get(SHARE_HIDDEN_LAYERS):
num_text_sentence_features = model_data.number_of_units(TEXT, SENTENCE)
num_label_sentence_features = model_data.number_of_units(LABEL, SENTENCE)
Expand All @@ -519,7 +518,6 @@ def _extract_labels_precomputed_features(
self, label_examples: List[Message], attribute: Text = INTENT
) -> Tuple[List[FeatureArray], List[FeatureArray]]:
"""Collects precomputed encodings."""

features = defaultdict(list)

for e in label_examples:
Expand All @@ -546,7 +544,6 @@ def _compute_default_label_features(
labels_example: List[Message],
) -> List[FeatureArray]:
"""Computes one-hot representation for the labels."""

logger.debug("No label features found. Computing default label features.")

eye_matrix = np.eye(len(labels_example), dtype=np.float32)
Expand All @@ -571,7 +568,6 @@ def _create_label_data(
If the features are already computed, fetch them from the message object
else compute a one hot encoding for the label as the feature vector.
"""

# Collect one example for each label
labels_idx_examples = []
for label_name, idx in label_id_dict.items():
Expand Down Expand Up @@ -731,7 +727,6 @@ def preprocess_train_data(self, training_data: TrainingData) -> RasaModelData:

Performs sanity checks on training data, extracts encodings for labels.
"""

if self.component_config[BILOU_FLAG]:
bilou_utils.apply_bilou_schema(training_data)

Expand Down Expand Up @@ -887,7 +882,9 @@ def _predict_entities(
if predict_out is None:
return []

predicted_tags, confidence_values = self._entity_label_to_tags(predict_out)
predicted_tags, confidence_values = train_utils.entity_label_to_tags(
predict_out, self._entity_tag_specs, self.component_config[BILOU_FLAG]
)

entities = self.convert_predictions_into_entities(
message.get(TEXT),
Expand All @@ -902,31 +899,8 @@ def _predict_entities(

return entities

def _entity_label_to_tags(
self, predict_out: Dict[Text, Any]
) -> Tuple[Dict[Text, List[Text]], Dict[Text, List[float]]]:
predicted_tags = {}
confidence_values = {}

for tag_spec in self._entity_tag_specs:
predictions = predict_out[f"e_{tag_spec.tag_name}_ids"].numpy()
confidences = predict_out[f"e_{tag_spec.tag_name}_scores"].numpy()
confidences = [float(c) for c in confidences[0]]
tags = [tag_spec.ids_to_tags[p] for p in predictions[0]]

if self.component_config[BILOU_FLAG]:
tags, confidences = bilou_utils.ensure_consistent_bilou_tagging(
tags, confidences
)

predicted_tags[tag_spec.tag_name] = tags
confidence_values[tag_spec.tag_name] = confidences

return predicted_tags, confidence_values

def process(self, message: Message, **kwargs: Any) -> None:
"""Return the most likely label and its similarity to the input."""

out = self._predict(message)

if self.component_config[INTENT_CLASSIFICATION]:
Expand Down
24 changes: 16 additions & 8 deletions rasa/nlu/extractors/extractor.py
Original file line number Diff line number Diff line change
Expand Up @@ -128,8 +128,8 @@ def filter_trainable_entities(

return filtered

@staticmethod
def convert_predictions_into_entities(
self,
text: Text,
tokens: List[Token],
tags: Dict[Text, List[Text]],
Expand Down Expand Up @@ -158,16 +158,22 @@ def convert_predictions_into_entities(
last_token_end = -1

for idx, token in enumerate(tokens):
current_entity_tag = self.get_tag_for(tags, ENTITY_ATTRIBUTE_TYPE, idx)
current_entity_tag = EntityExtractor.get_tag_for(
tags, ENTITY_ATTRIBUTE_TYPE, idx
)

if current_entity_tag == NO_ENTITY_TAG:
last_entity_tag = NO_ENTITY_TAG
last_token_end = token.end
continue

current_group_tag = self.get_tag_for(tags, ENTITY_ATTRIBUTE_GROUP, idx)
current_group_tag = EntityExtractor.get_tag_for(
tags, ENTITY_ATTRIBUTE_GROUP, idx
)
current_group_tag = bilou_utils.tag_without_prefix(current_group_tag)
current_role_tag = self.get_tag_for(tags, ENTITY_ATTRIBUTE_ROLE, idx)
current_role_tag = EntityExtractor.get_tag_for(
tags, ENTITY_ATTRIBUTE_ROLE, idx
)
current_role_tag = bilou_utils.tag_without_prefix(current_role_tag)

group_or_role_changed = (
Expand Down Expand Up @@ -207,7 +213,7 @@ def convert_predictions_into_entities(

if new_tag_found:
# new entity found
entity = self._create_new_entity(
entity = EntityExtractor._create_new_entity(
list(tags.keys()),
current_entity_tag,
current_group_tag,
Expand All @@ -217,7 +223,7 @@ def convert_predictions_into_entities(
confidences,
)
entities.append(entity)
elif self._check_is_single_entity(
elif EntityExtractor._check_is_single_entity(
text, token, last_token_end, split_entities_config, current_entity_tag
):
# current token has the same entity tag as the token before and
Expand All @@ -226,14 +232,16 @@ def convert_predictions_into_entities(
# and a whitespace.
entities[-1][ENTITY_ATTRIBUTE_END] = token.end
if confidences is not None:
self._update_confidence_values(entities, confidences, idx)
EntityExtractor._update_confidence_values(
entities, confidences, idx
)

else:
# the token has the same entity tag as the token before but the two
# tokens are separated by at least 2 symbols (e.g. multiple spaces,
# a comma and a space, etc.) and also shouldn't be represented as a
# single entity
entity = self._create_new_entity(
entity = EntityExtractor._create_new_entity(
list(tags.keys()),
current_entity_tag,
current_group_tag,
Expand Down
Loading