BIDS-dmrirecon
is developed to perform dwi quantitative mapping/tractography based on CSD (constrained spherical deconvolution) estimation from MRtrix3. Main functions include:
- CSD estimation (dwi2fod)
- DTI mapping (dwi2tensor)
- Fiber tracking (https://github.com/MIC-DKFZ/TractSeg)
- DKI mapping (https://github.com/m-ama/PyDesigner)
- NODDI mapping (https://github.com/daducci/AMICO)
- ALPS mapping (https://github.com/gbarisano/alps)
- Network establishment (tck2connectome)
- Visualization (vtk/vtp files)
The input data should be arranged according to BIDS format. Input image modalities must include 3D-T1w and dMRI data.
Check details of brain atlases
Check bids-dmriprep version history in Change Log
docker pull mindsgo-sz-docker.pkg.coding.net/neuroimage_analysis/base/bids-dmrirecon:latest
docker tag mindsgo-sz-docker.pkg.coding.net/neuroimage_analysis/base/bids-dmrirecon:latest bids-dmrirecon:latest
cd BIDS-dmrirecon
docker build -t bids-dmrirecon:latest .
use sMRIPrep for T1w data preprocessing
docker run -it --rm -v <bids_root>:/bids_dataset bids-smriprep:latest python /run.py /bids_dataset --participant_label 01 02 03 -MNInormalization -fsl_5ttgen -cleanup
use dMRIPrep for dMRI data preprocessing
docker run -it --rm --gpus all -v <bids_root>:/bids_dataset bids-dmriprep:latest python /run.py /bids_dataset /bids_dataset/derivatives/dmri_prep participant --participant_label 01 02 03 -mode complete
docker run -it --rm -v <bids_root>:/bids_dataset bids-dmrirecon:latest python /run.py /bids_dataset /bids_dataset/derivatives/dmri_recon participant --participant_label 01 02 03 -mode tract,dti_para,connectome -bundle_json /scripts/bundle_list_all72.json -wholebrain_fiber 5000000 -atlases AAL3_MNI desikan_T1w -cleanup
docker run -it --rm -v <bids_root>:/bids_dataset bids-dmrirecon:latest python /scripts/json2csv.py /bids_dataset participant
-
-mode
: Which type of dMRI analysis mode to run -
-mode tract
: fiber tracking for predefined tracts (default) -
-mode dti_para
: DTI parameter mapping, generating FA/MD/AD/RD. -
-mode alps
: DTI-ALPS parameter mapping -
-mode dki_para
: DKI parameter mapping, generating MK/RK/AK/KFA/MKT. -
-mode noddi_para
: NODDI parameter mapping, generating ICVF/IVF/ODI. -
-mode connectome
: structural network creation.
/bids_dataset
: The root folder of a BIDS valid dataset (sub-XX folders should be found at the top level in this folder)./bids_dataset/derivatives/dmri_recon
: output pathparticipant
: process on participant level
--participant_label [str]
:A space delimited list of participant identifiers or a single identifier (the sub- prefix can be removed)--session_label [str]
:A space delimited list of session identifiers or a single identifier (the ses- prefix can be removed)-tracking [prob|det]
:tracking mode, probabilistic or deterministic. default = probabilistic-odf [tom|peaks]
:orientation distribution function (ODF, the probability of diffusion in a given direction). tom refers to Tract Orientation Maps, default = tom.-wholebrain_fiber_num [int]
:number of streamline for whole brain. default = 10000000-fiber_num [int]
:number of streamline for each tract, default = 2000-bundle_json [str]
:tract list to be tracked. default =/scripts/bundle_list.json
-atlases [str]
:A space delimited list of brain atlases. e.g.-atlases AAL3_MNI hcpmmp_T1w
. FreeSurfer should be ran first for atlases ends with_T1w
. Seeatlases/atlas_config_docker.json
for details.-resume
:resume running based on the temporary output generated by last run.-v
:check version-cleanup
: remove temporary files.
DTI_mapping
: DTI metrics,FA
/MD
/RD
/AD
/DEC-map(directionally-encoded colour map)
fiber_tracts/bundle_segmentations
: bundle maskfiber_tracts/Fibers
: tck file for each tractfiber_tracts/fiber_streamline.json
: summary for each tractDKI_mapping
: DTI metrics,MK
/RK
/AK
/KA
NODDI_mapping
: NODDI metrics,FIT_ICVF.nii.gz
/FIT_OD.nii.gz
/FIT_ISOVF.nii.gz
/FIT_dir.nii.gz
connectome
: brain structural networks. see structural-connectome-metric-options for details.visualization
: vtk/vtp files for each tract
Copyright © [email protected] Please make sure that your usage of this code is in compliance with the code license.