Skip to content

diffusion MRI postprocessing for bids data, including metric mapping and tractography

License

Notifications You must be signed in to change notification settings

Raphael-Camus/BIDS-dMRIrecon

 
 

Repository files navigation

BIDS-dMRIrecon

BIDS-dmrirecon is developed to perform dwi quantitative mapping/tractography based on CSD (constrained spherical deconvolution) estimation from MRtrix3. Main functions include:

The input data should be arranged according to BIDS format. Input image modalities must include 3D-T1w and dMRI data.

BIDS-dMRIrecon 中文说明

Check details of brain atlases

Check bids-dmriprep version history in Change Log

Contents

Install

install by pulling (recommend)

docker pull mindsgo-sz-docker.pkg.coding.net/neuroimage_analysis/base/bids-dmrirecon:latest
docker tag  mindsgo-sz-docker.pkg.coding.net/neuroimage_analysis/base/bids-dmrirecon:latest  bids-dmrirecon:latest

or install by docker build

cd BIDS-dmrirecon
docker build -t bids-dmrirecon:latest .

Before Running

use sMRIPrep for T1w data preprocessing

docker run -it --rm -v <bids_root>:/bids_dataset bids-smriprep:latest python /run.py /bids_dataset --participant_label 01 02 03 -MNInormalization -fsl_5ttgen -cleanup

use dMRIPrep for dMRI data preprocessing

docker run -it --rm --gpus all -v <bids_root>:/bids_dataset bids-dmriprep:latest python /run.py /bids_dataset /bids_dataset/derivatives/dmri_prep participant --participant_label 01 02 03 -mode complete

Running

default running

docker run -it --rm -v <bids_root>:/bids_dataset bids-dmrirecon:latest python /run.py /bids_dataset /bids_dataset/derivatives/dmri_recon participant --participant_label 01 02 03 -mode tract,dti_para,connectome -bundle_json /scripts/bundle_list_all72.json -wholebrain_fiber 5000000 -atlases AAL3_MNI desikan_T1w -cleanup

optional: summarize quantitative mapping metrics across all participants (post-hoc)

docker run -it --rm -v <bids_root>:/bids_dataset bids-dmrirecon:latest python /scripts/json2csv.py /bids_dataset participant

mode:

  • -mode: Which type of dMRI analysis mode to run

  • -mode tract: fiber tracking for predefined tracts (default)

  • -mode dti_para: DTI parameter mapping, generating FA/MD/AD/RD.

  • -mode alps: DTI-ALPS parameter mapping

  • -mode dki_para: DKI parameter mapping, generating MK/RK/AK/KFA/MKT.

  • -mode noddi_para: NODDI parameter mapping, generating ICVF/IVF/ODI.

  • -mode connectome: structural network creation.

Input Argument

positional argument:

  • /bids_dataset: The root folder of a BIDS valid dataset (sub-XX folders should be found at the top level in this folder).
  • /bids_dataset/derivatives/dmri_recon: output path
  • participant: process on participant level

optional argument:

  • --participant_label [str]:A space delimited list of participant identifiers or a single identifier (the sub- prefix can be removed)
  • --session_label [str]:A space delimited list of session identifiers or a single identifier (the ses- prefix can be removed)
  • -tracking [prob|det]:tracking mode, probabilistic or deterministic. default = probabilistic
  • -odf [tom|peaks]:orientation distribution function (ODF, the probability of diffusion in a given direction). tom refers to Tract Orientation Maps, default = tom.
  • -wholebrain_fiber_num [int]:number of streamline for whole brain. default = 10000000
  • -fiber_num [int]:number of streamline for each tract, default = 2000
  • -bundle_json [str]:tract list to be tracked. default = /scripts/bundle_list.json
  • -atlases [str]:A space delimited list of brain atlases. e.g. -atlases AAL3_MNI hcpmmp_T1w. FreeSurfer should be ran first for atlases ends with _T1w. See atlases/atlas_config_docker.json for details.
  • -resume:resume running based on the temporary output generated by last run.
  • -v:check version
  • -cleanup: remove temporary files.

Output explanation

  • DTI_mapping: DTI metrics, FA/MD/RD/AD/DEC-map(directionally-encoded colour map)
  • fiber_tracts/bundle_segmentations: bundle mask
  • fiber_tracts/Fibers: tck file for each tract
  • fiber_tracts/fiber_streamline.json: summary for each tract
  • DKI_mapping: DTI metrics, MK/RK/AK/KA
  • NODDI_mapping: NODDI metrics, FIT_ICVF.nii.gz/FIT_OD.nii.gz/FIT_ISOVF.nii.gz/FIT_dir.nii.gz
  • connectome: brain structural networks. see structural-connectome-metric-options for details.
  • visualization: vtk/vtp files for each tract

Copyright

Copyright © [email protected] Please make sure that your usage of this code is in compliance with the code license.

About

diffusion MRI postprocessing for bids data, including metric mapping and tractography

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.2%
  • Other 0.8%