Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[fix] pass@k and self-consistency #277

Merged
merged 3 commits into from
Jul 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -288,6 +288,12 @@ We expect all contributions discussed in the issue tracker and going through PRs

For more details, view the [CONTRIBUTING](https://github.com/RUCAIBox/LLMBox/tree/main/docs/CONTRIBUTING.md) documentation.

---

We thank the following contributors for their contributions to LLMBox:

- [@xansar](https://github.com/xansar) for fixing multiple complex issues like batch sampler and self-consistency.


## The Team

Expand Down
82 changes: 59 additions & 23 deletions utilization/dataset/dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -220,10 +220,10 @@ def __len__(self):
return len(self.evaluation_instances)

def __getitem__(self, idx):
return self.evaluation_instances[idx]
return deepcopy(self.evaluation_instances[idx])

def __iter__(self):
yield from self.evaluation_instances
yield from deepcopy(self.evaluation_instances)

def format_instance(self, instance: dict) -> dict:
r"""Format the dataset instance into task format. See [docs](https://github.com/RUCAIBox/LLMBox/blob/main/docs/utilization/how-to-customize-dataset.md#formating-the-instances) for more details.
Expand Down Expand Up @@ -832,6 +832,17 @@ def __repr__(self):


class DatasetCollection(torch.utils.data.Dataset):
r"""The dataset collection class that combines multiple datasets into one.

Args:
- datasets: A dictionary of dataset instances. The keys are the dataset names and the values are the dataset instances.

Examples:
Assume a DatasetCollection composed of two datasets: `sub1` and `sub2`. Each dataset has different number of evaluation instances.
- Two subets: `[sub1, sub2]`
- Two subsets with self-consistency = 3: `[sub1, sub1, sub1, sub2, sub2, sub2]`
- Two subsets with normalization: `[sub1, sub1-norm, sub2, sub2-norm]`
"""

def __init__(self, datasets: Dict[str, Dataset]):
super().__init__()
Expand Down Expand Up @@ -951,9 +962,6 @@ def set_subset(l: dict):
except Exception as e:
logger.warning(f"Failed to log predictions: {e}")

def post_processing(self, predictions: List[Union[str, float]]):
return sum((d.post_processing(p) for d, p in zip(self._datasets, self._split_by_subset(predictions))), [])

def __getitem__(self, idx):
if self.args.continue_from:
idx += self.args.continue_from
Expand All @@ -975,14 +983,39 @@ def __iter__(self):
def __getattr__(self, attr):
return getattr(self._datasets[self._cur_idx], attr)

def calculate_metric(self, predictions) -> Tuple[Dict[str, Dict[str, float]], List[Dict[str, List[float]]]]:
results = OrderedDict()
def calculate_metric(self, raw_predictions: List[Union[str, float]]) -> Dict[str, Dict[str, float]]:
r"""Post-process predictions and calculate the metric scores."""

metric_results = OrderedDict()
predictions = []
agg_predictions = []
score_lists = []
splitted = self._split_by_subset(predictions, option_num=False, normalization=False, sample_num=False)
grouped_display_names = defaultdict(list) # group by dataset
for n, d, p in zip(self.display_names, self._datasets, splitted):
subset_results, score_list = d.calculate_metric(p)
results.update(subset_results)
grouped_display_names = defaultdict(list)

for n, d, p in zip(self.display_names, self._datasets, self._split_by_subset(raw_predictions)):
# post process
preds = d.post_processing(p)

# aggregate self-consistency or pass@k
step = d.len(option_num=False, sample_num=False, normalization=False)
if self.args.pass_at_k:
# [inst1, inst2, inst1, inst2] -> [[inst1, inst1], [inst2, inst2]]
agg_preds = [preds[i::step] for i in range(step)]
elif len(preds) // step > 1:
from statistics import mode

# [inst1, inst2, inst1, inst2] -> [mode([inst1, inst1]), mode([inst2, inst2])]
agg_preds = [mode(preds[i::step]) for i in range(step)]
else:
# [inst1, inst2]
agg_preds = preds

predictions.extend(preds)
agg_predictions.extend(agg_preds)

# calculate metric
subset_results, score_list = d.calculate_metric(agg_preds)
metric_results.update(subset_results)
score_lists.append(score_list)
grouped_display_names[d.dataset_name].append(n)

Expand All @@ -995,19 +1028,22 @@ def calculate_metric(self, predictions) -> Tuple[Dict[str, Dict[str, float]], Li
# skip if not all subsets of a category are available
continue
fstr = f"{name}[{cat.title().replace('_', ' ')} Macro Average]"
results[fstr] = avg_metrics([results[n] for n in c])
metric_results[fstr] = avg_metrics([metric_results[n] for n in c])

if name == "gaokao":
r, f = zip(*[(results[name + ":" + n], f) for n, f in GAOKAO_CHINESE_TASKS_SCORE.items()])
results[name + "[Chinese Weighted Average]"] = avg_metrics(r, f, average_method="weighted")
r, f = zip(*[(results[name + ":" + n], f) for n, f in GAOKAO_ENGLISH_TASKS_SCORE.items()])
results[name + "[English Weighted Average]"] = avg_metrics(r, f, average_method="weighted")
r, f = zip(*[(results[name + ":" + n], f) for n, f in GAOKAO_TASKS_SCORE.items()])
results[name + "[Weighted Average]"] = avg_metrics(r, f, average_method="weighted")

results[name + "[Marco Average]"] = avg_metrics([r for k, r in results.items() if k.startswith(name + ":")])

return results, score_lists
r, f = zip(*[(metric_results[name + ":" + n], f) for n, f in GAOKAO_CHINESE_TASKS_SCORE.items()])
metric_results[name + "[Chinese Weighted Average]"] = avg_metrics(r, f, average_method="weighted")
r, f = zip(*[(metric_results[name + ":" + n], f) for n, f in GAOKAO_ENGLISH_TASKS_SCORE.items()])
metric_results[name + "[English Weighted Average]"] = avg_metrics(r, f, average_method="weighted")
r, f = zip(*[(metric_results[name + ":" + n], f) for n, f in GAOKAO_TASKS_SCORE.items()])
metric_results[name + "[Weighted Average]"] = avg_metrics(r, f, average_method="weighted")

metric_results[name + "[Marco Average]"] = avg_metrics([
r for k, r in metric_results.items() if k.startswith(name + ":")
])

self.log_final_results(raw_predictions, predictions, score_lists)
return metric_results

def get_batch_sampler(self, reload_tokenizer: bool = False):
if reload_tokenizer:
Expand Down
20 changes: 2 additions & 18 deletions utilization/evaluator.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
from logging import getLogger
from statistics import mode
from typing import Any, Callable, Dict, List, Optional

from .load_dataset import load_datasets
Expand Down Expand Up @@ -129,24 +128,9 @@ def evaluate(self) -> Dict[str, Dict[str, float]]:
f"The number of results {len(raw_predictions)} should be equal to the number of samples in the dataset {self.dataset.len()}."
)

# post processing and self-consistency
predictions = self.dataset.post_processing(raw_predictions)
if len(predictions) != self.dataset.len(option_num=False, normalization=False):
raise RuntimeError(
f"The number of results {len(predictions)} should be equal to the number of samples in the dataset {self.dataset.len(option_num=False, normalization=False)}."
)

step = self.dataset.len(option_num=False, sample_num=False, normalization=False)
if self.dataset_args.pass_at_k:
mode_predictions = [predictions[i::step] for i in range(step)]
elif len(predictions) // step > 1:
mode_predictions = [mode(predictions[i::step]) for i in range(step)]
else:
mode_predictions = predictions

# calculate metric
metric_results, last_score_lists = self.dataset.calculate_metric(mode_predictions)
self.dataset.log_final_results(raw_predictions, predictions, last_score_lists)
metric_results = self.dataset.calculate_metric(raw_predictions)

msg = f"Evaluation finished successfully:\nevaluation results: {self.dataset_args.evaluation_results_path}"
for display_name, result in metric_results.items():
if result is None:
Expand Down
2 changes: 1 addition & 1 deletion utilization/load_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -121,7 +121,7 @@ def get_subsets(
found_config = True
break
except Exception as e:
logger.info(f"Failed when trying to get_dataset_config_names({path}): {e}")
logger.info(f"Failed when trying to get_dataset_config_names({path}): {e}. Trying another method...")

logger.debug(f"get_dataset_config_names({path}): {s}")

Expand Down
2 changes: 1 addition & 1 deletion utilization/model_enum.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
from .utils.generation_args import generation_arg

VLLM_ARGS = {
"temperature": generation_arg(),
"temperature": generation_arg(default=0),
"top_p": generation_arg(),
"top_k": generation_arg(),
"max_tokens": generation_arg(default=1024),
Expand Down
Loading