Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[DO NOT MERGE] Vinayak/moe final hashem #127

Open
wants to merge 24 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
24 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 11 additions & 1 deletion benchmarks/kernels/benchmark_mixtral_moe.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,8 @@

from vllm.model_executor.layers.fused_moe import (fused_moe,
get_config_file_name)

from vllm import envs
from torch import nn

def main(model, tp_size, gpu, dtype: str):
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu)
Expand Down Expand Up @@ -154,6 +155,15 @@ def run_timing(num_calls: int, bs: int, d_model: int, num_total_experts: int,
device=hidden_states.device,
dtype=hidden_states.dtype,
)
if envs.VLLM_MOE_PADDING:
w1 = nn.Parameter(F.pad(w1.data,
(0, 128), "constant", 0),
requires_grad=False)
torch.cuda.empty_cache()
w2 = nn.Parameter(F.pad(w2,
(0, 128), "constant", 0),
requires_grad=False)
torch.cuda.empty_cache()

w1_scale = None
w2_scale = None
Expand Down
255 changes: 255 additions & 0 deletions benchmarks/kernels/benchmark_mixtral_moe_decode.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,255 @@
import argparse
import json
import os
import sys

import torch
import torch.nn.functional as F
import triton
from tqdm import tqdm
from vllm import envs
from torch import nn
from vllm.model_executor.layers.fused_moe import (fused_moe,
get_config_file_name)


def main(model, tp_size, gpu, dtype: str):
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu)
method = fused_moe
# for bs in [
# 1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128, 256, 512, 1024, 1536,
# 2048, 3072, 4096
# ]:
for bs in [8, 16, 32, 64, 96, 112, 120, 128]:
run_grid(bs,
model=model,
method=method,
gpu=gpu,
tp_size=tp_size,
dtype=dtype)


def run_grid(bs, model, method, gpu, tp_size, dtype: str):
if model == '8x7B':
d_model = 4096
model_intermediate_size = 14336
num_layers = 32
elif model == '8x22B':
d_model = 6144
model_intermediate_size = 16384
num_layers = 56
else:
raise ValueError(f'Unsupported Mixtral model {model}')
num_total_experts = 8
top_k = 2
# tp_size = 2
num_calls = 100

num_warmup_trials = 1
num_trials = 1

configs = []

for block_size_n in [32, 64, 128, 256]:
for block_size_m in [16, 32, 64, 128, 256]:
for block_size_k in [64, 128, 256]:
for group_size_m in [1, 16, 32, 64]:
for num_warps in [4, 8]:
for num_stages in [2, 3, 4, 5]:
configs.append({
"BLOCK_SIZE_M": block_size_m,
"BLOCK_SIZE_N": block_size_n,
"BLOCK_SIZE_K": block_size_k,
"GROUP_SIZE_M": group_size_m,
"num_warps": num_warps,
"num_stages": num_stages,
})

best_config = None
best_time_us = 1e20

print(f'{tp_size=} {bs=}')

# for config in tqdm(configs):
if 1:
# warmup
try:
for _ in range(num_warmup_trials):
run_timing(
num_calls=num_calls,
bs=bs,
d_model=d_model,
num_total_experts=num_total_experts,
top_k=top_k,
tp_size=tp_size,
model_intermediate_size=model_intermediate_size,
method=method,
config=None,
dtype=dtype,
)
except triton.runtime.autotuner.OutOfResources:
#continue
pass

# trial
for _ in range(num_trials):
kernel_dur_ms = run_timing(
num_calls=num_calls,
bs=bs,
d_model=d_model,
num_total_experts=num_total_experts,
top_k=top_k,
tp_size=tp_size,
model_intermediate_size=model_intermediate_size,
method=method,
config=None,
dtype=dtype,
)

kernel_dur_us = 1000 * kernel_dur_ms
model_dur_ms = kernel_dur_ms * num_layers

if kernel_dur_us < best_time_us:
# best_config = config
best_time_us = kernel_dur_us
tqdm.write(
f'{kernel_dur_us=:.1f} {model_dur_ms=:.1f}'
f' {bs=} {tp_size=} {top_k=} {num_total_experts=} '
f'{d_model=} {model_intermediate_size=} {num_layers=}')

print("best_time_us", best_time_us)
print("best_config", best_config)

# holds Dict[str, Dict[str, int]]
# filename = get_config_file_name(num_total_experts,
# model_intermediate_size // tp_size,
# "float8" if dtype == "float8" else None)
# print(f"writing config to file {filename}")
# existing_content = {}
# if os.path.exists(filename):
# with open(filename, "r") as f:
# existing_content = json.load(f)
# existing_content[str(bs)] = best_config
# with open(filename, "w") as f:
# json.dump(existing_content, f, indent=4)
# f.write("\n")


def run_timing(num_calls: int, bs: int, d_model: int, num_total_experts: int,
top_k: int, tp_size: int, model_intermediate_size: int, method,
config, dtype: str) -> float:
shard_intermediate_size = model_intermediate_size // tp_size

hidden_states = torch.rand(
(bs, d_model),
device="cuda:0",
dtype=torch.float16,
)

w1 = torch.rand(
(num_total_experts, 2 * shard_intermediate_size, d_model),
device=hidden_states.device,
dtype=hidden_states.dtype,
)

w2 = torch.rand(
(num_total_experts, d_model, shard_intermediate_size),
device=hidden_states.device,
dtype=hidden_states.dtype,
)

if envs.VLLM_MOE_PADDING:
w1 = nn.Parameter(F.pad(w1.data,
(0, 128), "constant", 0),
requires_grad=False)
torch.cuda.empty_cache()
w2 = nn.Parameter(F.pad(w2.data,
(0, 128), "constant", 0),
requires_grad=False)
torch.cuda.empty_cache()

w1_scale = None
w2_scale = None
a1_scale = None
a2_scale = None

if dtype == "float8":
w1 = w1.to(torch.float8_e4m3fn)
w2 = w2.to(torch.float8_e4m3fn)
w1_scale = torch.ones(num_total_experts,
device=hidden_states.device,
dtype=torch.float32)
w2_scale = torch.ones(num_total_experts,
device=hidden_states.device,
dtype=torch.float32)
a1_scale = torch.ones(1,
device=hidden_states.device,
dtype=torch.float32)
a2_scale = torch.ones(1,
device=hidden_states.device,
dtype=torch.float32)

gating_output = F.softmax(torch.rand(
(num_calls, bs, num_total_experts),
device=hidden_states.device,
dtype=torch.float32,
),
dim=-1)

start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)

start_event.record()
for i in range(num_calls):
hidden_states = method(
hidden_states=hidden_states,
w1=w1,
w2=w2,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
gating_output=gating_output[i],
topk=2,
renormalize=True,
inplace=True,
override_config=config,
use_fp8=dtype == "float8",
)
end_event.record()
end_event.synchronize()


# torch_output = torch_moe(a, w1, w2, score, topk)

dur_ms = start_event.elapsed_time(end_event) / num_calls
return dur_ms


if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog='benchmark_mixtral_moe',
description='Benchmark and tune the fused_moe kernel',
)
parser.add_argument(
'--dtype',
type=str,
default='auto',
choices=['float8', 'float16'],
help='Data type used for fused_moe kernel computations',
)
parser.add_argument('--model',
type=str,
default='8x7B',
choices=['8x7B', '8x22B'],
help='The Mixtral model to benchmark')
parser.add_argument('--tp-size',
type=int,
default=2,
help='Tensor paralleli size')
parser.add_argument('--gpu',
type=int,
default=0,
help="GPU ID for benchmarking")
args = parser.parse_args()
sys.exit(main(args.model, args.tp_size, args.gpu, args.dtype))
Loading
Loading