-
Notifications
You must be signed in to change notification settings - Fork 2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
19760: cpu/sam0_common/periph: add low-level SDMMC peripheral driver for SDHC r=benpicco a=gschorcht ### Contribution description This PR implements the low-level SDIO/SDMMC peripheral driver for SAM0 SDHC according to the definition in #19539. ### Testing procedure ``` BOARD=same54-xpro make -C tests/drivers/sdmmc ``` ``` BOARD=same54-xpro make -C tests/sys/vfs_default ``` ### Issues/PRs references ~Depends on PR #19539~ Depends on PR #19899 19946: posix_sockets.c: Fix 2 byte int compilation errors r=benpicco a=mrdeep1 19956: cpu/esp32: fix heap definition for ESP32-S2 and ESP32-S3 r=benpicco a=gschorcht ### Contribution description For ESP32-S2 and ESP32-S3 the symbol `_heap_end` must not be used as `_eheap` for the newlibc `malloc` and function `sbrk`. `_heap_end` is used by the ESP-IDF heap implementation `esp-idf-heap` and points to the highest possible address (0x40000000) that could be used for the heap in ESP-IDF. It doesn't point to the top address of the unused SRAM area that can be used in newlibc `malloc` and function `sbrk`. Instead, the origin and the length of `dram0_0_seg` must be used to calculate the end of the heap `_eheap`. The problem only occurs for the newlibc `malloc` when the `sbrk` function is used but not for the ESP-IDF heap implementation `esp_idf_heap`. ### Testing procedure Use any ESP32-S2 or ESP32-S3 board and flash `tests/sys/malloc`, e.g. ``` CFLAGS='-DCHUNK_SIZE=16384' USEMODULE='stdio_uart' BOARD=esp32s3-pros3 make -j8 -C tests/sys/malloc flash ``` Without the PR the `nm` command will give the wrong address ``` nm -s tests/sys/malloc/bin/esp32s3-pros3/tests_malloc.elf | grep _eheap 40000000 A _eheap ``` The test will stuck, i.e. the allocation of memory stops when the top of unused SRAM is reached and the board restarts when the watchdog timer expires. With the PR it should work as expected ``` Help: Press s to start test, r to print it is ready START main(): This is RIOT! (Version: 2023.10-devel-309-g4669e) calloc(zu, zu) = 0x10000000 CHUNK_SIZE: 16384 NUMBER_OF_TESTS: 3 Allocated 16384 Bytes at 0x3fc8c4b0, total 16384 ... Allocated 16384 Bytes at 0x3fcec6f0, total 409792 ESP-ROM:esp32s3-20210327 Build:Mar 27 2021 rst:0x7 (TG0WDT_SYS_RST),boot:0x8 (SPI_FAST_FLASH_BOOT) Saved PC:0x403763e3 ``` With this PR the `nm` command should give a address in unused SRAM address space ``` nm -s tests/sys/malloc/bin/esp32s3-pros3/tests_malloc.elf | grep _eheap 3fcca000 A _eheap ``` and the test should pass. ### Issues/PRs references 19957: cpu/esp32: fix Octal SPI RAM for ESP32-S3 r=benpicco a=gschorcht ### Contribution description This PR fixes Octal SPI RAM handling for ESP32-S3. Functions that are used during the initialization of the Octal SPI RAM must reside in IRAM instead of Flash. Otherwise, the system stucks during boot once the Octal SPI RAM is enabled. The reason is that the Flash is not available during the initialization of the Octal SPI RAM and the functions that are called during that initialization can't be accessed in Flash. As a result the call of such a function leads to code that is messed up and the system crashes. The PR also includes the documentation fixe for the `esp32s3-box`. It also includes a small documentation fix regarding the SPI RAM for the `esp32s3-pros3` board. ### Testing procedure Use a board that has Octal SPI RAM and flash `tests/sys/malloc`, e.g.: ``` CFLAGS='-DCHUNK_SIZE=16384' USEMODULE='stdio_uart esp_spi_ram esp_log_startup' \ BOARD=esp32s3-box make -C tests/sys/malloc ``` Without the PR, the system stuck during boot once the information for the Octal SPI RAM is print ``` ESP-ROM:esp32s3-20210327 ... I (133) boot: Loaded app from partition at offset 0x10000 I (134) boot: Disabling RNG early entropy source... vendor id : 0x0d (AP) dev id : 0x02 (generation 3) density : 0x03 (64 Mbit) good-die : 0x01 (Pass) Latency : 0x01 (Fixed) VCC : 0x01 (3V) SRF : 0x01 (Fast Refresh) BurstType : 0x01 (Hybrid Wrap) BurstLen : 0x01 (32 Byte) Readlatency : 0x02 (10 cycles@Fixed) DriveStrength: 0x00 (1/1) ``` and the board restarts when the watchdog timer expires. With this PR, the system starts as expected. ``` ESP-ROM:esp32s3-20210327 ... I (132) boot: Loaded app from partition at offset 0x10000 I (133) boot: Disabling RNG early entropy source... vendor id : 0x0d (AP) dev id : 0x02 (generation 3) density : 0x03 (64 Mbit) good-die : 0x01 (Pass) Latency : 0x01 (Fixed) VCC : 0x01 (3V) SRF : 0x01 (Fast Refresh) BurstType : 0x01 (Hybrid Wrap) BurstLen : 0x01 (32 Byte) Readlatency : 0x02 (10 cycles@Fixed) DriveStrength: 0x00 (1/1) Found 64MBit SPI RAM device SPI RAM mode: sram 40m PSRAM initialized, cache is in normal (1-core) mode. Pro cpu up. Single core mode SPI SRAM memory test OK Initializing. RAM available for dynamic allocation: At 3FC8C150 len 00053EB0 (335 KiB): D/IRAM At 3FCE0000 len 0000EE34 (59 KiB): STACK/DRAM At 3FCF0000 len 00008000 (32 KiB): DRAM Starting ESP32x with ID: f412fafd0f8c ESP-IDF SDK Version v4.4.1 Current clocks in Hz: CPU=80000000 APB=80000000 XTAL=40000000 SLOW=150000 PRO cpu is up (single core mode, only PRO cpu is used) PRO cpu starts user code Adding pool of 8192K of external SPI memory to heap allocator Used clocks in Hz: CPU=80000000 APB=80000000 XTAL=40000000 FAST=8000000 SLOW=150000 XTAL calibration value: 3643448 Heap free: 8754851 bytes Board configuration: UART_DEV(0) txd=43 rxd=44 LED pins=[ ] BUTTONS pins=[ 0 ] Starting RIOT kernel on PRO cpu Help: Press s to start test, r to print it is ready ``` ### Issues/PRs references Co-authored-by: Gunar Schorcht <[email protected]> Co-authored-by: Jon Shallow <[email protected]>
- Loading branch information
Showing
25 changed files
with
3,530 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.