Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add tests and examples of Cₘ × C₂ 2BGA codes #392

Merged
merged 3 commits into from
Nov 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions docs/src/references.bib
Original file line number Diff line number Diff line change
Expand Up @@ -487,3 +487,14 @@ @article{anderson2014fault
year={2014},
publisher={APS}
}

@article{lin2024quantum,
title={Quantum two-block group algebra codes},
author={Lin, Hsiang-Ku and Pryadko, Leonid P},
journal={Physical Review A},
volume={109},
number={2},
pages={022407},
year={2024},
publisher={APS}
}
28 changes: 24 additions & 4 deletions ext/QuantumCliffordHeckeExt/lifted_product.jl
Original file line number Diff line number Diff line change
Expand Up @@ -153,12 +153,32 @@ code_s(c::LPCode) = size(c.repr(zero(c.GA)), 1) * (size(c.A, 1) * size(c.B, 1) +
Two-block group algebra (2GBA) codes, which are a special case of lifted product codes
from two group algebra elements `a` and `b`, used as `1x1` base matrices.

Here is an example of a [[56, 28, 2]] 2BGA code from Table 2 of [lin2024quantum](@cite)
with direct product of `C₄ x C₂`.

```jldoctest
julia> import Hecke: group_algebra, GF, abelian_group, gens;

julia> GA = group_algebra(GF(2), abelian_group([14,2]));

julia> x = gens(GA)[1];

julia> s = gens(GA)[2];

julia> A = 1 + x^7

julia> B = 1 + x^7 + s + x^8 + s*x^7 + x

julia> c = two_block_group_algebra_codes(A,B);

julia> code_n(c), code_k(c)
(56, 28)
```

See also: [`LPCode`](@ref), [`generalized_bicycle_codes`](@ref), [`bicycle_codes`](@ref)
""" # TODO doctest example
"""
function two_block_group_algebra_codes(a::GroupAlgebraElem, b::GroupAlgebraElem)
A = reshape([a], (1, 1))
B = reshape([b], (1, 1))
LPCode(A, B)
LPCode([a;;], [b;;])
end

"""
Expand Down
119 changes: 119 additions & 0 deletions test/test_ecc_2bga.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
@testitem "ECC 2BGA" begin
using Hecke
using Hecke: group_algebra, GF, abelian_group, gens
using QuantumClifford.ECC: LPCode, code_k, code_n

@testset "Reproduce Table 2 lin2024quantum" begin # TODO these tests should probably just use the `two_block_group_algebra_codes` function as that would make them much shorter and simpler
# codes taken from Table 2 of [lin2024quantum](@cite)

# m = 4
GA = group_algebra(GF(2), abelian_group([4,2]))
x = gens(GA)[1]
s = gens(GA)[2]
A = [1 + x;;]
B = [1 + x + s + x^2 + s*x + s*x^3;;]
c = LPCode(A,B)
# [[16, 2, 4]] 2BGA code
@test code_n(c) == 16 && code_k(c) == 2
A = [1 + x;;]
B = [1 + x + s + x^2 + s*x + x^3;;]
c = LPCode(A,B)
# [[16, 4, 4]] 2BGA code
@test code_n(c) == 16 && code_k(c) == 4
A = [1 + s;;]
B = [1 + x + s + x^2 + s*x + x^2;;]
c = LPCode(A,B)
# [[16, 8, 2]] 2BGA code
@test code_n(c) == 16 && code_k(c) == 8

# m = 6
GA = group_algebra(GF(2), abelian_group([6,2]))
x = gens(GA)[1]
s = gens(GA)[2]
A = [1 + x;;]
B = [1 + x^3 + s + x^4 + x^2 + s*x;;]
c = LPCode(A,B)
# [[24, 4, 5]] 2BGA code
@test code_n(c) == 24 && code_k(c) == 4
A = [1 + x^3;;]
B = [1 + x^3 + s + x^4 + s*x^3 + x;;]
c = LPCode(A,B)
# [[24, 12, 2]] 2BGA code
@test code_n(c) == 24 && code_k(c) == 12

# m = 8
GA = group_algebra(GF(2), abelian_group([8,2]))
x = gens(GA)[1]
s = gens(GA)[2]
A = [1 + x^6;;]
B = [1 + s*x^7 + s*x^4 + x^6 + s*x^5 + s*x^2;;]
c = LPCode(A,B)
# [[32, 8, 4]] 2BGA code
@test code_n(c) == 32 && code_k(c) == 8
A = [1 + s*x^4;;]
B = [1 + s*x^7 + s*x^4 + x^6 + x^3 + s*x^2;;]
c = LPCode(A,B)
# [[32, 16, 2]] 2BGA code
@test code_n(c) == 32 && code_k(c) == 16

# m = 10
GA = group_algebra(GF(2), abelian_group([10,2]))
x = gens(GA)[1]
s = gens(GA)[2]
A = [1 + x;;]
B = [1 + x^5 + x^6 + s*x^6 + x^7 + s*x^3;;]
c = LPCode(A,B)
# [[40, 4, 8]] 2BGA code
@test code_n(c) == 40 && code_k(c) == 4
A = [1 + x^6;;]
B = [1 + x^5 + s + x^6 + x + s*x^2;;]
c = LPCode(A,B)
# [[40, 8, 5]] 2BGA code
@test code_n(c) == 40 && code_k(c) == 8
A = [1 + x^5;;]
B = [1 + x^5 + s + x^6 + s*x^5 + x;;]
c = LPCode(A,B)
# [[40, 20, 2]] 2BGA code
@test code_n(c) == 40 && code_k(c) == 20

# m = 12
GA = group_algebra(GF(2), abelian_group([12,2]))
x = gens(GA)[1]
s = gens(GA)[2]
A = [1 + s*x^10;;]
B = [1 + x^3 + s*x^6 + x^4 + x^7 + x^8;;]
c = LPCode(A,B)
# [[48, 8, 6]] 2BGA code
@test code_n(c) == 48 && code_k(c) == 8
A = [1 + x^3;;]
B = [1 + x^3 + s*x^6 + x^4 + s*x^9 + x^7;;]
c = LPCode(A,B)
# [[48, 12, 4]] 2BGA code
@test code_n(c) == 48 && code_k(c) == 12
A = [1 + x^4;;]
B = [1 + x^3 + s*x^6 + x^4 + x^7 + s*x^10;;]
c = LPCode(A,B)
# [[48, 16, 3]] 2BGA code
@test code_n(c) == 48 && code_k(c) == 16
A = [1 + s*x^6;;]
B = [1 + x^3 + s*x^6 + x^4 + s*x^9 + s*x^10;;]
c = LPCode(A,B)
# [[48, 24, 2]] 2BGA code
@test code_n(c) == 48 && code_k(c) == 24

# m = 14
GA = group_algebra(GF(2), abelian_group([14,2]))
x = gens(GA)[1]
s = gens(GA)[2]
A = [1 + x^8;;]
B = [1 + x^7 + s + x^8 + x^9 + s*x^4;;]
c = LPCode(A,B)
# [[56, 8, 7]] 2BGA code
@test code_n(c) == 56 && code_k(c) == 8
A = [1 + x^7;;]
B = [1 + x^7 + s + x^8 + s*x^7 + x;;]
c = LPCode(A,B)
# [[56, 28, 2]] 2BGA code
@test code_n(c) == 56 && code_k(c) == 28
end
end
Loading