Skip to content

Commit

Permalink
pardon: added remaining task: probabilistic non-stabilizer simulation…
Browse files Browse the repository at this point in the history
… as mentiond in earlier conversation comment
  • Loading branch information
Fe-r-oz committed Nov 11, 2024
1 parent 6fe89f7 commit ca9bcee
Showing 1 changed file with 61 additions and 8 deletions.
69 changes: 61 additions & 8 deletions test/test_nonclifford_quantumoptics.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ using LinearAlgebra
using Test
using InteractiveUtils
using Random
using Statistics

qo_basis = SpinBasis(1//2)
qo_tgate = sparse(identityoperator(qo_basis))
Expand Down Expand Up @@ -87,6 +88,18 @@ end
end
end

function multiqubit_projrand(τ,p)
qo_state = Operator(τ)
projectrand!(τ, p)[1]
qo_state_after_proj = Operator(τ)
qo_pauli = Operator(p)
qo_proj1 = (identityoperator(qo_pauli) - qo_pauli)/2
qo_proj2 = (identityoperator(qo_pauli) + qo_pauli)/2
result1 = qo_proj1*qo_state*qo_proj1'
result2 = qo_proj2*qo_state*qo_proj2'
return qo_state_after_proj, result1, result2
end

@testset "Multi-qubit projections using GeneralizedStabilizer for stabilizer states" begin
for n in 1:10
for repetition in 1:5
Expand All @@ -95,14 +108,7 @@ end
p = random_pauli(n)
τ = state(s)
apply!(τ, random_clifford(n))
qo_state = Operator(τ)
projectrand!(τ, p)[1]
qo_state_after_proj = Operator(τ)
qo_pauli = Operator(p)
qo_proj1 = (identityoperator(qo_pauli) - qo_pauli)/2
qo_proj2 = (identityoperator(qo_pauli) + qo_pauli)/2
result1 = qo_proj1*qo_state*qo_proj1'
result2 = qo_proj2*qo_state*qo_proj2'
qo_state_after_proj, result1, result2 = multiqubit_projrand(τ,p)
# Normalize to ensure consistent comparison of the projected state, independent of scaling factors
norm_qo_state_after_proj = qo_state_after_proj/tr(qo_state_after_proj)
norm_result1 = result1/tr(result1)
Expand All @@ -112,3 +118,50 @@ end
end
end
end

function non_stabilizer_simulator(num_trials,n)
count = 0
for n in 1:n # exponential cost in this term
for _ in 1:num_trials
s = random_stabilizer(n)
p = random_pauli(n)
gs = GeneralizedStabilizer(s)
i = rand(1:n)
nc = embed(n, i, pcT) # multi-qubit random non-Clifford gate
apply!(gs, nc)
qo_state_after_proj, result1, result2 = multiqubit_projrand(gs,p)
# Normalize to ensure consistent comparison of the projected state, independent of scaling factors
norm_qo_state_after_proj = qo_state_after_proj/tr(qo_state_after_proj)
norm_result1 = result1/tr(result1)
norm_result2 = result2/tr(result2)
if norm_qo_state_after_proj norm_result2 || norm_qo_state_after_proj norm_result1
count += 1
end
end
end
prob = count/(num_trials*n)
return prob
end

@testset "probabilistic non-stabilizer simulator" begin
# As described in https://www.scottaaronson.com/showcase2/report/ted-yoder.pdf,
# "The set of states that are stabilizer circuit efficient is related to the
# set of magic states, those states that, when combined with stabilizer circuits,
# allow universal quantum computation. The problems are essentially complementary;
# no magic state will be simulatable through every stabilizer circuit (assuming
# BQP is larger than BPP, that is). With qudits of odd prime dimension, it was
# recently found in https://arxiv.org/pdf/1201.1256 that a sufficient condition
# for a state to be efficiently (weakly) simulated through stabilizer circuits is
# that a certain quasi-probability representation of the state be positive."
# Therefore, non-Clifford simulators generally require probabilistic sampling
# techniques.

num_qubits = 10
num_trials = 10
probs = []
for i in 1:10
prob = non_stabilizer_simulator(num_trials, num_qubits)
push!(probs, prob)
end
@test mean(probs) > 0.5
end

0 comments on commit ca9bcee

Please sign in to comment.