Skip to content

Commit

Permalink
more examples of Bivariate Bicycle codes
Browse files Browse the repository at this point in the history
  • Loading branch information
Fe-r-oz committed Dec 2, 2024
1 parent 5fcf353 commit 8de3f7c
Showing 1 changed file with 74 additions and 0 deletions.
74 changes: 74 additions & 0 deletions test/test_ecc_bivaraite_bicycle_as_twobga.jl
Original file line number Diff line number Diff line change
Expand Up @@ -170,4 +170,78 @@
c = two_block_group_algebra_codes(A,B)
@test code_n(c) == 180 && code_k(c) == 8
end

@testset "Reproduce Table 1 eberhardt2024logical" begin
# [[108, 16, 6]]
l=6; m=9
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = 1 + y + y^2
B = y^3 + x^2 + x^4
c = two_block_group_algebra_codes(A,B)
@test code_n(c) == 108 && code_k(c) == 16

# [[128, 14, 12]]
l=8; m=8
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = x^2 + y + y^3 + y^4
B = y^2 + x + x^3 + x^4
c = two_block_group_algebra_codes(A,B)
@test code_n(c) == 128 && code_k(c) == 14

# [[162, 4, 16]]
l=9; m=9
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = 1 + x + y
B = x^3 + y + y^2
c = two_block_group_algebra_codes(A,B)
@test code_n(c) == 162 && code_k(c) == 4

# [[162, 12, 8]]
l=9; m=9
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = 1 + x + y^6
B = y^3 + x^2 + x^3
c = two_block_group_algebra_codes(A,B)
@test code_n(c) == 162 && code_k(c) == 12

# [[162, 24, 6]]
l=9; m=9
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = 1 + y + y^2
B = y^3 + x^3 + x^6
c = two_block_group_algebra_codes(A,B)
@test code_n(c) == 162 && code_k(c) == 24

# [[270, 8, 18]]
l=9; m=15
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = x^3 + y + y^2
B = y^3 + x + x^2
c = two_block_group_algebra_codes(A,B)
@test code_n(c) == 270 && code_k(c) == 8

# [[98, 6, 12]]
l=7; m=7
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = x + y^3 + y^4
B = y + x^3 + x^4
c = two_block_group_algebra_codes(A,B)
@test code_n(c) == 98 && code_k(c) == 6

# [[162, 8, 12]]
l=9; m=9
GA = group_algebra(GF(2), abelian_group([l, m]))
x, y = gens(GA)
A = x^3 + y + y^2
B = y^3 + x + x^2
c = two_block_group_algebra_codes(A,B)
@test code_n(c) == 162 && code_k(c) == 8
end
end

0 comments on commit 8de3f7c

Please sign in to comment.