-
Notifications
You must be signed in to change notification settings - Fork 50
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add tests and examples of Cₘ × C₂ 2BGA codes (#392)
Co-authored-by: Stefan Krastanov <[email protected]>
- Loading branch information
Showing
3 changed files
with
154 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
@testitem "ECC 2BGA" begin | ||
using Hecke | ||
using Hecke: group_algebra, GF, abelian_group, gens | ||
using QuantumClifford.ECC: LPCode, code_k, code_n | ||
|
||
@testset "Reproduce Table 2 lin2024quantum" begin # TODO these tests should probably just use the `two_block_group_algebra_codes` function as that would make them much shorter and simpler | ||
# codes taken from Table 2 of [lin2024quantum](@cite) | ||
|
||
# m = 4 | ||
GA = group_algebra(GF(2), abelian_group([4,2])) | ||
x = gens(GA)[1] | ||
s = gens(GA)[2] | ||
A = [1 + x;;] | ||
B = [1 + x + s + x^2 + s*x + s*x^3;;] | ||
c = LPCode(A,B) | ||
# [[16, 2, 4]] 2BGA code | ||
@test code_n(c) == 16 && code_k(c) == 2 | ||
A = [1 + x;;] | ||
B = [1 + x + s + x^2 + s*x + x^3;;] | ||
c = LPCode(A,B) | ||
# [[16, 4, 4]] 2BGA code | ||
@test code_n(c) == 16 && code_k(c) == 4 | ||
A = [1 + s;;] | ||
B = [1 + x + s + x^2 + s*x + x^2;;] | ||
c = LPCode(A,B) | ||
# [[16, 8, 2]] 2BGA code | ||
@test code_n(c) == 16 && code_k(c) == 8 | ||
|
||
# m = 6 | ||
GA = group_algebra(GF(2), abelian_group([6,2])) | ||
x = gens(GA)[1] | ||
s = gens(GA)[2] | ||
A = [1 + x;;] | ||
B = [1 + x^3 + s + x^4 + x^2 + s*x;;] | ||
c = LPCode(A,B) | ||
# [[24, 4, 5]] 2BGA code | ||
@test code_n(c) == 24 && code_k(c) == 4 | ||
A = [1 + x^3;;] | ||
B = [1 + x^3 + s + x^4 + s*x^3 + x;;] | ||
c = LPCode(A,B) | ||
# [[24, 12, 2]] 2BGA code | ||
@test code_n(c) == 24 && code_k(c) == 12 | ||
|
||
# m = 8 | ||
GA = group_algebra(GF(2), abelian_group([8,2])) | ||
x = gens(GA)[1] | ||
s = gens(GA)[2] | ||
A = [1 + x^6;;] | ||
B = [1 + s*x^7 + s*x^4 + x^6 + s*x^5 + s*x^2;;] | ||
c = LPCode(A,B) | ||
# [[32, 8, 4]] 2BGA code | ||
@test code_n(c) == 32 && code_k(c) == 8 | ||
A = [1 + s*x^4;;] | ||
B = [1 + s*x^7 + s*x^4 + x^6 + x^3 + s*x^2;;] | ||
c = LPCode(A,B) | ||
# [[32, 16, 2]] 2BGA code | ||
@test code_n(c) == 32 && code_k(c) == 16 | ||
|
||
# m = 10 | ||
GA = group_algebra(GF(2), abelian_group([10,2])) | ||
x = gens(GA)[1] | ||
s = gens(GA)[2] | ||
A = [1 + x;;] | ||
B = [1 + x^5 + x^6 + s*x^6 + x^7 + s*x^3;;] | ||
c = LPCode(A,B) | ||
# [[40, 4, 8]] 2BGA code | ||
@test code_n(c) == 40 && code_k(c) == 4 | ||
A = [1 + x^6;;] | ||
B = [1 + x^5 + s + x^6 + x + s*x^2;;] | ||
c = LPCode(A,B) | ||
# [[40, 8, 5]] 2BGA code | ||
@test code_n(c) == 40 && code_k(c) == 8 | ||
A = [1 + x^5;;] | ||
B = [1 + x^5 + s + x^6 + s*x^5 + x;;] | ||
c = LPCode(A,B) | ||
# [[40, 20, 2]] 2BGA code | ||
@test code_n(c) == 40 && code_k(c) == 20 | ||
|
||
# m = 12 | ||
GA = group_algebra(GF(2), abelian_group([12,2])) | ||
x = gens(GA)[1] | ||
s = gens(GA)[2] | ||
A = [1 + s*x^10;;] | ||
B = [1 + x^3 + s*x^6 + x^4 + x^7 + x^8;;] | ||
c = LPCode(A,B) | ||
# [[48, 8, 6]] 2BGA code | ||
@test code_n(c) == 48 && code_k(c) == 8 | ||
A = [1 + x^3;;] | ||
B = [1 + x^3 + s*x^6 + x^4 + s*x^9 + x^7;;] | ||
c = LPCode(A,B) | ||
# [[48, 12, 4]] 2BGA code | ||
@test code_n(c) == 48 && code_k(c) == 12 | ||
A = [1 + x^4;;] | ||
B = [1 + x^3 + s*x^6 + x^4 + x^7 + s*x^10;;] | ||
c = LPCode(A,B) | ||
# [[48, 16, 3]] 2BGA code | ||
@test code_n(c) == 48 && code_k(c) == 16 | ||
A = [1 + s*x^6;;] | ||
B = [1 + x^3 + s*x^6 + x^4 + s*x^9 + s*x^10;;] | ||
c = LPCode(A,B) | ||
# [[48, 24, 2]] 2BGA code | ||
@test code_n(c) == 48 && code_k(c) == 24 | ||
|
||
# m = 14 | ||
GA = group_algebra(GF(2), abelian_group([14,2])) | ||
x = gens(GA)[1] | ||
s = gens(GA)[2] | ||
A = [1 + x^8;;] | ||
B = [1 + x^7 + s + x^8 + x^9 + s*x^4;;] | ||
c = LPCode(A,B) | ||
# [[56, 8, 7]] 2BGA code | ||
@test code_n(c) == 56 && code_k(c) == 8 | ||
A = [1 + x^7;;] | ||
B = [1 + x^7 + s + x^8 + s*x^7 + x;;] | ||
c = LPCode(A,B) | ||
# [[56, 28, 2]] 2BGA code | ||
@test code_n(c) == 56 && code_k(c) == 28 | ||
end | ||
end |