Skip to content

An exploration of vgg16 convolutional neural network model for classification and detection of everyday objects

Notifications You must be signed in to change notification settings

Qrishna/object-detection-tensorflow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

object-detection-tensorflow

An exploration of vgg16 convolutional neural network model for classification and detection of everyday objects using tensorflow

To get started
pip install -r requirements.txt
python main.py

Sample

Model: "vgg16"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         [(None, 224, 224, 3)]     0         
_________________________________________________________________
block1_conv1 (Conv2D)        (None, 224, 224, 64)      1792      
_________________________________________________________________
block1_conv2 (Conv2D)        (None, 224, 224, 64)      36928     
_________________________________________________________________
block1_pool (MaxPooling2D)   (None, 112, 112, 64)      0         
_________________________________________________________________
block2_conv1 (Conv2D)        (None, 112, 112, 128)     73856     
_________________________________________________________________
block2_conv2 (Conv2D)        (None, 112, 112, 128)     147584    
_________________________________________________________________
block2_pool (MaxPooling2D)   (None, 56, 56, 128)       0         
_________________________________________________________________
block3_conv1 (Conv2D)        (None, 56, 56, 256)       295168    
_________________________________________________________________
block3_conv2 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_conv3 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_pool (MaxPooling2D)   (None, 28, 28, 256)       0         
_________________________________________________________________
block4_conv1 (Conv2D)        (None, 28, 28, 512)       1180160   
_________________________________________________________________
block4_conv2 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_conv3 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_pool (MaxPooling2D)   (None, 14, 14, 512)       0         
_________________________________________________________________
block5_conv1 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv2 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv3 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_pool (MaxPooling2D)   (None, 7, 7, 512)         0         
_________________________________________________________________
flatten (Flatten)            (None, 25088)             0         
_________________________________________________________________
fc1 (Dense)                  (None, 4096)              102764544 
_________________________________________________________________
fc2 (Dense)                  (None, 4096)              16781312  
_________________________________________________________________
predictions (Dense)          (None, 1000)              4097000   
=================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
_________________________________________________________________
None
data/cat-burglar.jpeg
[[('n02091032', 'Italian_greyhound', 0.072527245)]]
 
data/dog1.jpg
[[('n02115641', 'dingo', 0.25389808)]]
 
data/footage1.png
[[('n04404412', 'television', 0.14333622)]]
 
data/humans.jpg
[[('n03404251', 'fur_coat', 0.22053848)]]
 
data/earth.jpg
[[('n09229709', 'bubble', 0.38293993)]]
 
data/mug.jpg
[[('n03063599', 'coffee_mug', 0.7553635)]]
 
data/cat-217679.jpg
[[('n02113978', 'Mexican_hairless', 0.3990956)]]

About

An exploration of vgg16 convolutional neural network model for classification and detection of everyday objects

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages