This repository is the official implementation of "T2Det: Twin-tower detector with geometric invariance for oriented object detection" at [Please stay tuned!]
The master branch is built on MMRotate which works with PyTorch 1.8+.
T2Det's train/test configure files are placed under configs/exp_configs/t2det/
The Instructions of T2Det can be referenced to here.
- CSPNeXt-m: pre-trained checkpoint supported by Openmmlab(link).
- ResNet: pre-trained ResNet50 supported by Pytorch.
Model | mAP | Angle | lr schd | Batch Size | Configs | Download |
---|---|---|---|---|---|---|
RTMDet-M | 83.32 | le90 | 6x | 4 | model | |
T2Det | 85.15 | le90 | 6x | 4 | t2det-vedai | model |log |
Model | mAP | Angle | lr schd | Batch Size | Configs | Download |
---|---|---|---|---|---|---|
T2Det | 90.66 | le90 | 6x | 8 | t2det-hrsc2016 | model | log |
For example, when dataset is VEDAI and method is T2Det, you can train by running the following
python tools/train.py \
--config configs/exp_configs/t2det/VEDAI/t2det_rtmdet_m-6x-vedai.py \
--work-dir work_dirs/t2det \
--load_from path/to/pre-trained/model \
and if you want test the VEDAI results, you can run as follows
python tools/test.py \
--config configs/exp_configs/t2det/VEDAI/t2det_rtmdet_m-6x-vedai.py \
--checkpoint path/to/t2det/model.pth \
--cfg-options test_evaluator.outfile_prefix='path/to/save_dir'
Detailed hyperparameters config can be found in t2det_configs
MMRotate depends on PyTorch, MMCV and MMDetection. Below are quick steps for installation. Please refer to Install Guide for more detailed instruction.
conda create --name openmmlab python=3.8 -y
conda activate openmmlab
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2 -c pytorch
pip install -U openmim
mim install mmcv-full
mim install mmdet
git clone https://github.com/Qian-CV/PG-DRFNet.git
cd PG-DRFNet
pip install -v -e .
Please see here for the basic usage of MMRotate. We also provide some tutorials for:
The code is developed based on the following repositories. We appreciate their nice implementations.
Method | Repository |
---|---|
RTMDet | https://github.com/open-mmlab/mmdetection |
RTMDet-R | https://github.com/open-mmlab/mmrotate |
ECANet | https://github.com/BangguWu/ECANet |
QFocal | https://github.com/implus/GFocal |
If you use this software in your work, please cite it using the following metadata. Liuqian Wang, Jing Zhang, et. al. (2024). T2Det by BJUT-AI&VBD [Computer software]. https://github.com/Qian-CV/T2Det.git