Skip to content

Commit

Permalink
[DOC] Improve documentation rendering (#710)
Browse files Browse the repository at this point in the history
* improve documentation rendering

* Update RELEASES.md

---------

Co-authored-by: Cédric Vincent-Cuaz <[email protected]>
Co-authored-by: Rémi Flamary <[email protected]>
  • Loading branch information
3 people authored Jan 20, 2025
1 parent 9d00f96 commit a11b055
Show file tree
Hide file tree
Showing 8 changed files with 125 additions and 118 deletions.
1 change: 1 addition & 0 deletions RELEASES.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
- Fixed numerical errors in `ot.gmm` (PR #690, Issue #689)
- Add version number to the documentation (PR #696)
- Update doc for default regularization in `ot.unbalanced` sinkhorn solvers (Issue #691, PR #700)
- Clean documentation for `gromov`, `lp` and `unbalanced` folders (PR #710)

## 0.9.5

Expand Down
14 changes: 7 additions & 7 deletions ot/gromov/_lowrank.py
Original file line number Diff line number Diff line change
Expand Up @@ -92,14 +92,14 @@ def lowrank_gromov_wasserstein_samples(
where :
- :math: `A` is the (`dim_a`, `dim_a`) square pairwise cost matrix of the source domain.
- :math: `B` is the (`dim_a`, `dim_a`) square pairwise cost matrix of the target domain.
- :math: `\mathcal{Q}_{A,B}` is quadratic objective function of the Gromov Wasserstein plan.
- :math: `Q` and `R` are the low-rank matrix decomposition of the Gromov-Wasserstein plan.
- :math: `g` is the weight vector for the low-rank decomposition of the Gromov-Wasserstein plan.
- :math:`A` is the (`dim_a`, `dim_a`) square pairwise cost matrix of the source domain.
- :math:`B` is the (`dim_a`, `dim_a`) square pairwise cost matrix of the target domain.
- :math:`\mathcal{Q}_{A,B}` is quadratic objective function of the Gromov Wasserstein plan.
- :math:`Q` and `R` are the low-rank matrix decomposition of the Gromov-Wasserstein plan.
- :math:`g` is the weight vector for the low-rank decomposition of the Gromov-Wasserstein plan.
- :math:`\mathbf{a}` and :math:`\mathbf{b}` are source and target weights (histograms, both sum to 1).
- :math: `r` is the rank of the Gromov-Wasserstein plan.
- :math: `\mathcal{C(a,b,r)}` are the low-rank couplings of the OT problem.
- :math:`r` is the rank of the Gromov-Wasserstein plan.
- :math:`\mathcal{C(a,b,r)}` are the low-rank couplings of the OT problem.
- :math:`H((Q,R,g))` is the values of the three respective entropies evaluated for each term.
Expand Down
14 changes: 7 additions & 7 deletions ot/gromov/_partial.py
Original file line number Diff line number Diff line change
Expand Up @@ -1002,18 +1002,18 @@ def solve_partial_gromov_linesearch(
Parameters
----------
G : array-like, shape(ns,nt)
G : array-like, shape(ns, nt)
The transport map at a given iteration of the FW
deltaG : array-like (ns,nt)
deltaG : array-like, shape (ns, nt)
Difference between the optimal map `Gc` found by linearization in the
FW algorithm and the value at a given iteration
cost_G : float
Value of the cost at `G`
df_G : array-like (ns,nt)
df_G : array-like, shape (ns, nt)
Gradient of the GW cost at `G`
df_Gc : array-like (ns,nt)
df_Gc : array-like, shape (ns, nt)
Gradient of the GW cost at `Gc`
M : array-like (ns,nt)
M : array-like, shape (ns, nt)
Cost matrix between the features.
reg : float
Regularization parameter.
Expand All @@ -1032,7 +1032,7 @@ def solve_partial_gromov_linesearch(
nb of function call. Useless here
cost_G : float
The value of the cost for the next iteration
df_G : array-like (ns,nt)
df_G : array-like, shape (ns, nt)
Updated gradient of the GW cost
References
Expand Down Expand Up @@ -1173,7 +1173,7 @@ def entropic_partial_gromov_wasserstein(
Returns
-------
:math: `gamma` : (dim_a, dim_b) ndarray
:math:`gamma` : ndarray, shape (dim_a, dim_b)
Optimal transportation matrix for the given parameters
log : dict
log dictionary returned only if `log` is `True`
Expand Down
32 changes: 16 additions & 16 deletions ot/lp/solver_1d.py
Original file line number Diff line number Diff line change
Expand Up @@ -160,7 +160,7 @@ def emd_1d(
where :
- d is the metric
- x_a and x_b are the samples
- :math:`x_a` and :math:`x_b` are the samples
- a and b are the sample weights
This implementation only supports metrics
Expand All @@ -170,21 +170,21 @@ def emd_1d(
Parameters
----------
x_a : (ns,) or (ns, 1) ndarray, float64
x_a : ndarray of float64, shape (ns,) or (ns, 1)
Source dirac locations (on the real line)
x_b : (nt,) or (ns, 1) ndarray, float64
x_b : ndarray of float64, shape (nt,) or (ns, 1)
Target dirac locations (on the real line)
a : (ns,) ndarray, float64, optional
a : ndarray of float64, shape (ns,), optional
Source histogram (default is uniform weight)
b : (nt,) ndarray, float64, optional
b : ndarray of float64, shape (nt,), optional
Target histogram (default is uniform weight)
metric: str, optional (default='sqeuclidean')
Metric to be used. Only works with either of the strings
`'sqeuclidean'`, `'minkowski'`, `'cityblock'`, or `'euclidean'`.
p: float, optional (default=1.0)
The p-norm to apply for if metric='minkowski'
dense: boolean, optional (default=True)
If True, returns math:`\gamma` as a dense ndarray of shape (ns, nt).
If True, returns :math:`\gamma` as a dense ndarray of shape (ns, nt).
Otherwise returns a sparse representation using scipy's `coo_matrix`
format. Due to implementation details, this function runs faster when
`'sqeuclidean'`, `'minkowski'`, `'cityblock'`, or `'euclidean'` metrics
Expand All @@ -198,7 +198,7 @@ def emd_1d(
Returns
-------
gamma: (ns, nt) ndarray
gamma: ndarray, shape (ns, nt)
Optimal transportation matrix for the given parameters
log: dict
If input log is True, a dictionary containing the cost
Expand Down Expand Up @@ -318,7 +318,7 @@ def emd2_1d(
where :
- d is the metric
- x_a and x_b are the samples
- :math:`x_a` and :math:`x_b` are the samples
- a and b are the sample weights
This implementation only supports metrics
Expand All @@ -328,21 +328,21 @@ def emd2_1d(
Parameters
----------
x_a : (ns,) or (ns, 1) ndarray, float64
x_a : ndarray of float64, shape (ns,) or (ns, 1)
Source dirac locations (on the real line)
x_b : (nt,) or (ns, 1) ndarray, float64
x_b : ndarray of float64, shape (nt,) or (ns, 1)
Target dirac locations (on the real line)
a : (ns,) ndarray, float64, optional
a : ndarray of float64, shape (ns,), optional
Source histogram (default is uniform weight)
b : (nt,) ndarray, float64, optional
b : ndarray of float64, shape (nt,), optional
Target histogram (default is uniform weight)
metric: str, optional (default='sqeuclidean')
Metric to be used. Only works with either of the strings
`'sqeuclidean'`, `'minkowski'`, `'cityblock'`, or `'euclidean'`.
p: float, optional (default=1.0)
The p-norm to apply for if metric='minkowski'
dense: boolean, optional (default=True)
If True, returns math:`\gamma` as a dense ndarray of shape (ns, nt).
If True, returns :math:`\gamma` as a dense ndarray of shape (ns, nt).
Otherwise returns a sparse representation using scipy's `coo_matrix`
format. Only used if log is set to True. Due to implementation details,
this function runs faster when dense is set to False.
Expand Down Expand Up @@ -405,9 +405,9 @@ def roll_cols(M, shifts):
Parameters
----------
M : (nr, nc) ndarray
M : ndarray, shape (nr, nc)
Matrix to shift
shifts: int or (nr,) ndarray
shifts: int or ndarray, shape (nr,)
Returns
-------
Expand Down Expand Up @@ -1046,7 +1046,7 @@ def semidiscrete_wasserstein2_unif_circle(u_values, u_weights=None):
Parameters
----------
u_values: ndarray, shape (n, ...)
u_values : ndarray, shape (n, ...)
Samples
u_weights : ndarray, shape (n, ...), optional
samples weights in the source domain
Expand Down
12 changes: 7 additions & 5 deletions ot/plot.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ def plot1D_mat(
r"""Plot matrix :math:`\mathbf{M}` with the source and target 1D distributions.
Creates a subplot with the source distribution :math:`\mathbf{a}` and target
distribution :math:`\mathbf{b}`t.
distribution :math:`\mathbf{b}`.
In 'yx' mode (default), the source is on the left and
the target on the top, and in 'xy' mode, source on the bottom (upside
down) and the target on the left.
Expand Down Expand Up @@ -69,8 +69,9 @@ def plot1D_mat(
ax2 : target plot ax
ax3 : coupling plot ax
.. seealso::
:func:`rescale_for_imshow_plot`
See Also
--------
:func:`rescale_for_imshow_plot`
"""
assert plot_style in ["yx", "xy"], "plot_style should be 'yx' or 'xy'"
na, nb = M.shape
Expand Down Expand Up @@ -188,8 +189,9 @@ def rescale_for_imshow_plot(x, y, n, m=None, a_y=None, b_y=None):
yr : ndarray, shape (nx,)
Rescaled y values (due to slicing, may have less elements than y)
.. seealso::
:func:`plot1D_mat`
See Also
--------
:func:`plot1D_mat`
"""
# slice over the y values that are in the y range
Expand Down
30 changes: 15 additions & 15 deletions ot/solvers.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,7 @@ def solve(
Parameters
----------
M : array_like, shape (dim_a, dim_b)
M : array-like, shape (dim_a, dim_b)
Loss matrix
a : array-like, shape (dim_a,), optional
Samples weights in the source domain (default is uniform)
Expand All @@ -88,10 +88,10 @@ def solve(
reg : float, optional
Regularization weight :math:`\lambda_r`, by default None (no reg., exact
OT)
c : array-like (dim_a, dim_b), optional (default=None)
c : array-like, shape (dim_a, dim_b), optional (default=None)
Reference measure for the regularization.
If None, then use :math:`\mathbf{c} = \mathbf{a} \mathbf{b}^T`.
If :math:`\texttt{reg_type}='entropy'`, then :math:`\mathbf{c} = 1_{dim_a} 1_{dim_b}^T`.
If :math:`\texttt{reg_type}=`'entropy', then :math:`\mathbf{c} = 1_{dim_a} 1_{dim_b}^T`.
reg_type : str, optional
Type of regularization :math:`R` either "KL", "L2", "entropy",
by default "KL". a tuple of functions can be provided for general
Expand All @@ -116,9 +116,9 @@ def solve(
Number of OMP threads for exact OT solver, by default 1
max_iter : int, optional
Maximum number of iterations, by default None (default values in each solvers)
plan_init : array_like, shape (dim_a, dim_b), optional
plan_init : array-like, shape (dim_a, dim_b), optional
Initialization of the OT plan for iterative methods, by default None
potentials_init : (array_like(dim_a,),array_like(dim_b,)), optional
potentials_init : (array-like(dim_a,),array-like(dim_b,)), optional
Initialization of the OT dual potentials for iterative methods, by default None
tol : _type_, optional
Tolerance for solution precision, by default None (default values in each solvers)
Expand Down Expand Up @@ -628,11 +628,11 @@ def solve_gromov(
Parameters
----------
Ca : array_like, shape (dim_a, dim_a)
Ca : array-like, shape (dim_a, dim_a)
Cost matrix in the source domain
Cb : array_like, shape (dim_b, dim_b)
Cb : array-like, shape (dim_b, dim_b)
Cost matrix in the target domain
M : array_like, shape (dim_a, dim_b), optional
M : array-like, shape (dim_a, dim_b), optional
Linear cost matrix for Fused Gromov-Wasserstein (default is None).
a : array-like, shape (dim_a,), optional
Samples weights in the source domain (default is uniform)
Expand Down Expand Up @@ -669,7 +669,7 @@ def solve_gromov(
max_iter : int, optional
Maximum number of iterations, by default None (default values in each
solvers)
plan_init : array_like, shape (dim_a, dim_b), optional
plan_init : array-like, shape (dim_a, dim_b), optional
Initialization of the OT plan for iterative methods, by default None
tol : float, optional
Tolerance for solution precision, by default None (default values in
Expand Down Expand Up @@ -1342,10 +1342,10 @@ def solve_sample(
reg : float, optional
Regularization weight :math:`\lambda_r`, by default None (no reg., exact
OT)
c : array-like (dim_a, dim_b), optional (default=None)
c : array-like, shape (dim_a, dim_b), optional (default=None)
Reference measure for the regularization.
If None, then use :math:`\mathbf{c} = \mathbf{a} \mathbf{b}^T`.
If :math:`\texttt{reg_type}='entropy'`, then :math:`\mathbf{c} = 1_{dim_a} 1_{dim_b}^T`.
If :math:`\texttt{reg_type}=`'entropy', then :math:`\mathbf{c} = 1_{dim_a} 1_{dim_b}^T`.
reg_type : str, optional
Type of regularization :math:`R` either "KL", "L2", "entropy", by default "KL"
unbalanced : float or indexable object of length 1 or 2
Expand Down Expand Up @@ -1374,13 +1374,13 @@ def solve_sample(
Number of OMP threads for exact OT solver, by default 1
max_iter : int, optional
Maximum number of iteration, by default None (default values in each solvers)
plan_init : array_like, shape (dim_a, dim_b), optional
plan_init : array-like, shape (dim_a, dim_b), optional
Initialization of the OT plan for iterative methods, by default None
rank : int, optional
Rank of the OT matrix for lazy solers (method='factored'), by default 100
scaling : float, optional
Scaling factor for the epsilon scaling lazy solvers (method='geomloss'), by default 0.95
potentials_init : (array_like(dim_a,),array_like(dim_b,)), optional
potentials_init : (array-like(dim_a,),array-like(dim_b,)), optional
Initialization of the OT dual potentials for iterative methods, by default None
tol : _type_, optional
Tolerance for solution precision, by default None (default values in each solvers)
Expand Down Expand Up @@ -1511,7 +1511,7 @@ def solve_sample(
.. math::
\min_{\mathbf{T}\geq 0} \quad \sum_{i,j} T_{i,j}M_{i,j} + \lambda_u U(\mathbf{T}\mathbf{1},\mathbf{a}) + \lambda_u U(\mathbf{T}^T\mathbf{1},\mathbf{b})
with M_{i,j} = d(x_i,y_j)
\text{with} \ M_{i,j} = d(x_i,y_j)
can be solved with the following code:
Expand All @@ -1530,7 +1530,7 @@ def solve_sample(
.. math::
\min_{\mathbf{T}\geq 0} \quad \sum_{i,j} T_{i,j}M_{i,j} + \lambda_r R(\mathbf{T}) + \lambda_u U(\mathbf{T}\mathbf{1},\mathbf{a}) + \lambda_u U(\mathbf{T}^T\mathbf{1},\mathbf{b})
with M_{i,j} = d(x_i,y_j)
\text{with} \ M_{i,j} = d(x_i,y_j)
can be solved with the following code:
Expand Down
Loading

0 comments on commit a11b055

Please sign in to comment.