This is the code for A Collective Learning Framework to Boost GNN Expressiveness
Author: Mengyue Hang
PyTorch 1.2.0
Python 3.6
networkx==2.4
numpy==1.17.3
scipy==1.3.1
for unlabeled test data: cd clgnn; python train_unlabeled.py -h
for partially-labeled test data: cd clgnn; python train_labeled.py -h
A full list of parameters is shown in help message with -h.
We provide Cora as example dataset. You can put your own dataset in the data/ for testing.
e.g. to test GCN and CL-GCN (with our collective learning framework) performance on unlabeled test data:
python train_unlabeled.py --model_choice gcn_rand --iterations 2
to test tk and CL-tk performance on partially-labeled test data:
python train_labeled.py --model_choice tk_rand --baseline
python train_labeled.py --model_choice tk_rand