-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
SavitzkyGolay simple layer checks for PyTorch > 1.5.1 if padding mode…
… not zeros, and version dependent tests added. Signed-off-by: Christian Baker <[email protected]>
- Loading branch information
Showing
4 changed files
with
264 additions
and
209 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,136 +1,162 @@ | ||
# Copyright 2020 MONAI Consortium | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
|
||
import numpy as np | ||
import torch | ||
from parameterized import parameterized | ||
|
||
from monai.networks.layers import SavitskyGolayFilter | ||
from tests.utils import skip_if_no_cuda | ||
|
||
# Zero-padding trivial tests | ||
|
||
TEST_CASE_SINGLE_VALUE = [ | ||
{"window_length": 3, "order": 1}, | ||
torch.Tensor([1.0]).unsqueeze(0).unsqueeze(0), # Input data: Single value | ||
torch.Tensor([1 / 3]).unsqueeze(0).unsqueeze(0), # Expected output: With a window length of 3 and polyorder 1 | ||
# output should be equal to mean of 0, 1 and 0 = 1/3 (because input will be zero-padded and a linear fit performed) | ||
1e-15, # absolute tolerance | ||
] | ||
|
||
TEST_CASE_1D = [ | ||
{"window_length": 3, "order": 1}, | ||
torch.Tensor([1.0, 1.0, 1.0]).unsqueeze(0).unsqueeze(0), # Input data | ||
torch.Tensor([2 / 3, 1.0, 2 / 3]) | ||
.unsqueeze(0) | ||
.unsqueeze(0), # Expected output: zero padded, so linear interpolation | ||
# over length-3 windows will result in output of [2/3, 1, 2/3]. | ||
1e-15, # absolute tolerance | ||
] | ||
|
||
TEST_CASE_2D_AXIS_2 = [ | ||
{"window_length": 3, "order": 1}, # along default axis (2, first spatial dim) | ||
torch.ones((3, 2)).unsqueeze(0).unsqueeze(0), | ||
torch.Tensor([[2 / 3, 2 / 3], [1.0, 1.0], [2 / 3, 2 / 3]]).unsqueeze(0).unsqueeze(0), | ||
1e-15, # absolute tolerance | ||
] | ||
|
||
TEST_CASE_2D_AXIS_3 = [ | ||
{"window_length": 3, "order": 1, "axis": 3}, # along axis 3 (second spatial dim) | ||
torch.ones((2, 3)).unsqueeze(0).unsqueeze(0), | ||
torch.Tensor([[2 / 3, 1.0, 2 / 3], [2 / 3, 1.0, 2 / 3]]).unsqueeze(0).unsqueeze(0), | ||
1e-15, # absolute tolerance | ||
] | ||
|
||
# Replicated-padding trivial tests | ||
|
||
TEST_CASE_SINGLE_VALUE_REP = [ | ||
{"window_length": 3, "order": 1, "mode": "replicate"}, | ||
torch.Tensor([1.0]).unsqueeze(0).unsqueeze(0), # Input data: Single value | ||
torch.Tensor([1.0]).unsqueeze(0).unsqueeze(0), # Expected output: With a window length of 3 and polyorder 1 | ||
# output will be equal to mean of [1, 1, 1] = 1 (input will be nearest-neighbour-padded and a linear fit performed) | ||
1e-15, # absolute tolerance | ||
] | ||
|
||
TEST_CASE_1D_REP = [ | ||
{"window_length": 3, "order": 1, "mode": "replicate"}, | ||
torch.Tensor([1.0, 1.0, 1.0]).unsqueeze(0).unsqueeze(0), # Input data | ||
torch.Tensor([1.0, 1.0, 1.0]).unsqueeze(0).unsqueeze(0), # Expected output: zero padded, so linear interpolation | ||
# over length-3 windows will result in output of [2/3, 1, 2/3]. | ||
1e-15, # absolute tolerance | ||
] | ||
|
||
TEST_CASE_2D_AXIS_2_REP = [ | ||
{"window_length": 3, "order": 1, "mode": "replicate"}, # along default axis (2, first spatial dim) | ||
torch.ones((3, 2)).unsqueeze(0).unsqueeze(0), | ||
torch.Tensor([[1.0, 1.0], [1.0, 1.0], [1.0, 1.0]]).unsqueeze(0).unsqueeze(0), | ||
1e-15, # absolute tolerance | ||
] | ||
|
||
TEST_CASE_2D_AXIS_3_REP = [ | ||
{"window_length": 3, "order": 1, "axis": 3, "mode": "replicate"}, # along axis 3 (second spatial dim) | ||
torch.ones((2, 3)).unsqueeze(0).unsqueeze(0), | ||
torch.Tensor([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]).unsqueeze(0).unsqueeze(0), | ||
1e-15, # absolute tolerance | ||
] | ||
|
||
# Sine smoothing | ||
|
||
TEST_CASE_SINE_SMOOTH = [ | ||
{"window_length": 3, "order": 1}, | ||
# Sine wave with period equal to savgol window length (windowed to reduce edge effects). | ||
torch.as_tensor(np.sin(2 * np.pi * 1 / 3 * np.arange(100)) * np.hanning(100)).unsqueeze(0).unsqueeze(0), | ||
# Should be smoothed out to zeros | ||
torch.zeros(100).unsqueeze(0).unsqueeze(0), | ||
# tolerance chosen by examining output of SciPy.signal.savgol_filter when provided the above input | ||
2e-2, # absolute tolerance | ||
] | ||
|
||
|
||
class TestSavitskyGolayCPU(unittest.TestCase): | ||
@parameterized.expand( | ||
[ | ||
TEST_CASE_SINGLE_VALUE, | ||
TEST_CASE_1D, | ||
TEST_CASE_2D_AXIS_2, | ||
TEST_CASE_2D_AXIS_3, | ||
TEST_CASE_SINGLE_VALUE_REP, | ||
TEST_CASE_1D_REP, | ||
TEST_CASE_2D_AXIS_2_REP, | ||
TEST_CASE_2D_AXIS_3_REP, | ||
TEST_CASE_SINE_SMOOTH, | ||
] | ||
) | ||
def test_value(self, arguments, image, expected_data, atol): | ||
result = SavitskyGolayFilter(**arguments)(image) | ||
np.testing.assert_allclose(result, expected_data, atol=atol) | ||
|
||
|
||
@skip_if_no_cuda | ||
class TestSavitskyGolayGPU(unittest.TestCase): | ||
@parameterized.expand( | ||
[ | ||
TEST_CASE_SINGLE_VALUE, | ||
TEST_CASE_1D, | ||
TEST_CASE_2D_AXIS_2, | ||
TEST_CASE_2D_AXIS_3, | ||
TEST_CASE_SINGLE_VALUE_REP, | ||
TEST_CASE_1D_REP, | ||
TEST_CASE_2D_AXIS_2_REP, | ||
TEST_CASE_2D_AXIS_3_REP, | ||
TEST_CASE_SINE_SMOOTH, | ||
] | ||
) | ||
def test_value(self, arguments, image, expected_data, atol): | ||
result = SavitskyGolayFilter(**arguments)(image.to(device="cuda")) | ||
np.testing.assert_allclose(result.cpu(), expected_data, atol=atol) | ||
# Copyright 2020 MONAI Consortium | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
|
||
import numpy as np | ||
import torch | ||
from parameterized import parameterized | ||
|
||
from monai.networks.layers import SavitzkyGolayFilter | ||
from monai.utils import InvalidPyTorchVersionError | ||
from tests.utils import SkipIfAtLeastPyTorchVersion, SkipIfBeforePyTorchVersion, skip_if_no_cuda | ||
|
||
# Zero-padding trivial tests | ||
|
||
TEST_CASE_SINGLE_VALUE = [ | ||
{"window_length": 3, "order": 1}, | ||
torch.Tensor([1.0]).unsqueeze(0).unsqueeze(0), # Input data: Single value | ||
torch.Tensor([1 / 3]).unsqueeze(0).unsqueeze(0), # Expected output: With a window length of 3 and polyorder 1 | ||
# output should be equal to mean of 0, 1 and 0 = 1/3 (because input will be zero-padded and a linear fit performed) | ||
1e-15, # absolute tolerance | ||
] | ||
|
||
TEST_CASE_1D = [ | ||
{"window_length": 3, "order": 1}, | ||
torch.Tensor([1.0, 1.0, 1.0]).unsqueeze(0).unsqueeze(0), # Input data | ||
torch.Tensor([2 / 3, 1.0, 2 / 3]) | ||
.unsqueeze(0) | ||
.unsqueeze(0), # Expected output: zero padded, so linear interpolation | ||
# over length-3 windows will result in output of [2/3, 1, 2/3]. | ||
1e-15, # absolute tolerance | ||
] | ||
|
||
TEST_CASE_2D_AXIS_2 = [ | ||
{"window_length": 3, "order": 1}, # along default axis (2, first spatial dim) | ||
torch.ones((3, 2)).unsqueeze(0).unsqueeze(0), | ||
torch.Tensor([[2 / 3, 2 / 3], [1.0, 1.0], [2 / 3, 2 / 3]]).unsqueeze(0).unsqueeze(0), | ||
1e-15, # absolute tolerance | ||
] | ||
|
||
TEST_CASE_2D_AXIS_3 = [ | ||
{"window_length": 3, "order": 1, "axis": 3}, # along axis 3 (second spatial dim) | ||
torch.ones((2, 3)).unsqueeze(0).unsqueeze(0), | ||
torch.Tensor([[2 / 3, 1.0, 2 / 3], [2 / 3, 1.0, 2 / 3]]).unsqueeze(0).unsqueeze(0), | ||
1e-15, # absolute tolerance | ||
] | ||
|
||
# Replicated-padding trivial tests | ||
|
||
TEST_CASE_SINGLE_VALUE_REP = [ | ||
{"window_length": 3, "order": 1, "mode": "replicate"}, | ||
torch.Tensor([1.0]).unsqueeze(0).unsqueeze(0), # Input data: Single value | ||
torch.Tensor([1.0]).unsqueeze(0).unsqueeze(0), # Expected output: With a window length of 3 and polyorder 1 | ||
# output will be equal to mean of [1, 1, 1] = 1 (input will be nearest-neighbour-padded and a linear fit performed) | ||
1e-15, # absolute tolerance | ||
] | ||
|
||
TEST_CASE_1D_REP = [ | ||
{"window_length": 3, "order": 1, "mode": "replicate"}, | ||
torch.Tensor([1.0, 1.0, 1.0]).unsqueeze(0).unsqueeze(0), # Input data | ||
torch.Tensor([1.0, 1.0, 1.0]).unsqueeze(0).unsqueeze(0), # Expected output: zero padded, so linear interpolation | ||
# over length-3 windows will result in output of [2/3, 1, 2/3]. | ||
1e-15, # absolute tolerance | ||
] | ||
|
||
TEST_CASE_2D_AXIS_2_REP = [ | ||
{"window_length": 3, "order": 1, "mode": "replicate"}, # along default axis (2, first spatial dim) | ||
torch.ones((3, 2)).unsqueeze(0).unsqueeze(0), | ||
torch.Tensor([[1.0, 1.0], [1.0, 1.0], [1.0, 1.0]]).unsqueeze(0).unsqueeze(0), | ||
1e-15, # absolute tolerance | ||
] | ||
|
||
TEST_CASE_2D_AXIS_3_REP = [ | ||
{"window_length": 3, "order": 1, "axis": 3, "mode": "replicate"}, # along axis 3 (second spatial dim) | ||
torch.ones((2, 3)).unsqueeze(0).unsqueeze(0), | ||
torch.Tensor([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]).unsqueeze(0).unsqueeze(0), | ||
1e-15, # absolute tolerance | ||
] | ||
|
||
# Sine smoothing | ||
|
||
TEST_CASE_SINE_SMOOTH = [ | ||
{"window_length": 3, "order": 1}, | ||
# Sine wave with period equal to savgol window length (windowed to reduce edge effects). | ||
torch.as_tensor(np.sin(2 * np.pi * 1 / 3 * np.arange(100)) * np.hanning(100)).unsqueeze(0).unsqueeze(0), | ||
# Should be smoothed out to zeros | ||
torch.zeros(100).unsqueeze(0).unsqueeze(0), | ||
# tolerance chosen by examining output of SciPy.signal.savgol_filter when provided the above input | ||
2e-2, # absolute tolerance | ||
] | ||
|
||
|
||
class TestSavitzkyGolayCPU(unittest.TestCase): | ||
@parameterized.expand( | ||
[ | ||
TEST_CASE_SINGLE_VALUE, | ||
TEST_CASE_1D, | ||
TEST_CASE_2D_AXIS_2, | ||
TEST_CASE_2D_AXIS_3, | ||
TEST_CASE_SINE_SMOOTH, | ||
] | ||
) | ||
def test_value(self, arguments, image, expected_data, atol): | ||
result = SavitzkyGolayFilter(**arguments)(image) | ||
np.testing.assert_allclose(result, expected_data, atol=atol) | ||
|
||
|
||
@SkipIfBeforePyTorchVersion((1, 5, 1)) | ||
class TestSavitzkyGolayCPUREP(unittest.TestCase): | ||
@parameterized.expand( | ||
[TEST_CASE_SINGLE_VALUE_REP, TEST_CASE_1D_REP, TEST_CASE_2D_AXIS_2_REP, TEST_CASE_2D_AXIS_3_REP] | ||
) | ||
def test_value(self, arguments, image, expected_data, atol): | ||
result = SavitzkyGolayFilter(**arguments)(image) | ||
np.testing.assert_allclose(result, expected_data, atol=atol) | ||
|
||
|
||
@skip_if_no_cuda | ||
class TestSavitzkyGolayGPU(unittest.TestCase): | ||
@parameterized.expand( | ||
[ | ||
TEST_CASE_SINGLE_VALUE, | ||
TEST_CASE_1D, | ||
TEST_CASE_2D_AXIS_2, | ||
TEST_CASE_2D_AXIS_3, | ||
TEST_CASE_SINE_SMOOTH, | ||
] | ||
) | ||
def test_value(self, arguments, image, expected_data, atol): | ||
result = SavitzkyGolayFilter(**arguments)(image.to(device="cuda")) | ||
np.testing.assert_allclose(result.cpu(), expected_data, atol=atol) | ||
|
||
|
||
@skip_if_no_cuda | ||
@SkipIfBeforePyTorchVersion((1, 5, 1)) | ||
class TestSavitzkyGolayGPUREP(unittest.TestCase): | ||
@parameterized.expand( | ||
[ | ||
TEST_CASE_SINGLE_VALUE_REP, | ||
TEST_CASE_1D_REP, | ||
TEST_CASE_2D_AXIS_2_REP, | ||
TEST_CASE_2D_AXIS_3_REP, | ||
] | ||
) | ||
def test_value(self, arguments, image, expected_data, atol): | ||
result = SavitzkyGolayFilter(**arguments)(image.to(device="cuda")) | ||
np.testing.assert_allclose(result.cpu(), expected_data, atol=atol) | ||
|
||
|
||
@SkipIfAtLeastPyTorchVersion((1, 5, 1)) | ||
class TestSavitzkyGolayInvalidPyTorch(unittest.TestCase): | ||
def test_invalid_pytorch_error(self): | ||
with self.assertRaisesRegex(InvalidPyTorchVersionError, "version"): | ||
SavitzkyGolayFilter(3, 1, mode="replicate")(torch.ones((1, 1, 10, 10))) |
Oops, something went wrong.