Skip to content

ProbIOU/PROBIOU-SSD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ProbIOU Loss

Base code here

Losses

Losses can be chosen with the --losstype option in the arguments in train.py file. The valid options are currently: [Iou|Giou|Diou|Ciou|SmoothL1|Piou].

Fold-Structure

The fold structure as follow:

  • config/
    • config.py
    • init.py
  • data/
    • init.py
    • VOC.py
    • VOCdevkit/
  • model/
    • build_ssd.py
    • init.py
    • backbone/
    • neck/
    • head/
    • utils/
  • utils/
    • box/
    • detection/
    • loss/
    • init.py
  • tools/
    • train.py
    • eval.py
    • test.py
  • work_dir/

Environment

  • conda create --name probiou-ssd python=3.6
  • conda activate probiou-ssd
  • pip install -r requirements.txt

Datasets

  • PASCAL VOC:Download VOC2007, VOC2012 dataset, then put VOCdevkit in the data directory or run get_voc_dataset.sh in data folder

Training

Training VOC

python tools/train.py --loss <loss_type> --work_name <save_path>

Also yo can activate python -m visdom.server in an additional tmux window to track the losses.

Evaluation

  • To evaluate a trained network:
python tools/ap.py --trained_model {your_weight_address} --ProbIoU [True/False]

For example: (the output is AP50, AP75 and AP of our CIoU loss)

Results:
0.033
0.015
0.009
0.011
0.008
0.083
0.044
0.042
0.004
0.014
0.026
0.034
0.010
0.006
0.009
0.006
0.009
0.013
0.106
0.011
0.025
~~~~~~~~

--------------------------------------------------------------
Results computed with the **unofficial** Python eval code.
Results should be very close to the official MATLAB eval code.
--------------------------------------------------------------
0.7884902583981603 0.5615516772893671 0.5143832356646468

Test

  • To test a trained network:
python test.py -- trained_model {your_weight_address}

if you want to visual the box, you can add the command --visbox True(default False)

Cite our work

@article{Murrugarra_Llerena_2024,
   title={Probabilistic Intersection-Over-Union for Training and Evaluation of Oriented Object Detectors},
   volume={33},
   ISSN={1941-0042},
   url={http://dx.doi.org/10.1109/TIP.2023.3348697},
   DOI={10.1109/tip.2023.3348697},
   journal={IEEE Transactions on Image Processing},
   publisher={Institute of Electrical and Electronics Engineers (IEEE)},
   author={Murrugarra-Llerena, Jeffri and Kirsten, Lucas N. and Zeni, Luis Felipe and Jung, Claudio R.},
   year={2024},
   pages={671–681} }

FOR QUESTION

email me at: [email protected]

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published