Skip to content

Preemo-Inc/nix-ml-ops

Repository files navigation

nix-ml-ops

nix-ml-ops is a collection of flake parts for setting up a machine learning development environment and deploying machine learning jobs and services onto cloud platforms.

See options documentation for all available options.

Getting Started

Here is an example of the ml-ops config. In the example: ."${"key"}". denotes a name picked by the user, while ."key". denotes a union, i.e. there are multiple choices. The notations are used for documenting purpose, and they are all identical to simple .key. in Nix language.

Submitting a job to AKS

{
  ml-ops = {

    # Common volumes shared between devcontainer and jobs
    common.volumeMounts."nfs"."${"/mnt/ml-data/"}". = {
      server = "my-server.example.com";
      path = "/ml_data";
    };

    # Common environment variables shared between devcontainer and jobs
    common.environmentVariables = {};

    # Environment variables in additionto the ml-ops.common.environmentVariables
    devcontainer.environmentVariables = {
    }

    devcontainer.volumeMounts = {
      # Volumes in addition to the ml-ops.common.volumeMounts
      "emptyDir"."${"/mnt/my-temporary-data/"}" = {
        medium = "Memory";
      };
    };

    # TODO: Support elastic
    # jobs."${"training"}".resources."elastic"

    # This is the configuration for single node training orstatic distributed
    # training, not for elastic distributed training
    jobs."${"training"}".resources."static".accelerators."A100" = 16;
    jobs."${"training"}".resources."static".cpus = 32;

    jobs."${"training"}".run = ''
      torchrun ...
    '';
    # Environment variables in additionto the ml-ops.common.environmentVariables
    jobs."${"training"}".environmentVariables = {
      HF_DATASETS_IN_MEMORY_MAX_SIZE = "200000000";
    };

    # Volumes in addition to the ml-ops.common.volumeMounts
    jobs."${"training"}".volumeMounts = {};

    jobs."${"training"}".launchers."${"my-aks-launcher"}"."kubernetes".imageRegistry.host = "us-central1-docker.pkg.dev/ml-solutions-371721/training-images";
    jobs."${"training"}".launchers."${"my-aks-launcher"}"."kubernetes".namespace = "default";

    jobs."${"training"}".launchers."${"my-aks-launcher"}"."kubernetes".aks = {
      cluster = "mykubernetescluster";
      resourceGroup = "myresourcegroup";
      registryName = "mycontainerregistry";
    };

    # TODO: Other types of launcher
    # jobs."${"training"}".launchers."${"my-aws-ec2-launcher"}"."skypilot" = { ... };

    # Extra package available in both runtime and development environment:
    pythonEnvs."pep508".common.extraPackages."${"peft"}"."buildPythonPackage".src = peft-src;

    # Extra packages available in development environment only:
    pythonEnvs."pep508".development.extraPackages = {};

    # TODO: Support poetry projects:
    # pythonEnvs."poetry" = { ... };
  };

}

Then, run the following command to start the job:

nix build .#training-my-aks-launcher-helmUpgrade

The command will internally do the following things:

  1. Build an image including a Python script with the environment of dependencies specified in requirements.txt.
  2. Push the image to Azure Container Registry mycontainerregistry.azurecr.io
  3. Create a Helm chart including job to run the image
  4. Upgrade the Helm chart on AKS cluster mykubernetescluster in resource group myresourcegroup

Devserver

This repository also includes packages to build VM images as a NixOS based devserver.

Generate VM images of devservers

on devserver

nix build .#devserver-gce
nix build .#devserver-amazon
# Azure Image Generation 1
nix build .#devserver-azure
# Azure Image Generation 2
nix build .#devserver-hyperv

Note that KVM must be enabled on the devserver. See this document for enabling KVM on GCE.

Also the following steps are required on Debian to install kvm kernel modules:

sudo apt-get install qemu-kvm

sudo tee -a /etc/nix/nix.conf <<EOF
extra-experimental-features = nix-command flakes
extra-system-features = kvm
EOF

Upload the devserver image to Google Cloud

nix run .#upload-devserver-gce-image

Then the image will be uploaded to https://console.cloud.google.com/compute/images?tab=images&project=ml-solutions-371721&pageState=(%22images%22:(%22f%22:%22%255B%257B_22k_22_3A_22%25E5%2588%259B%25E5%25BB%25BA%25E8%2580%2585_22_2C_22t_22_3A10_2C_22v_22_3A_22_5C_22ml-solutions-371721_5C_22_22_2C_22s_22_3Atrue_2C_22i_22_3A_22creator_22%257D%255D%22))

Note that in order to upload the built image, the nix run command must be executed in a GCP VM whose service account has the permission to upload image, or it is executed after a successful gcloud auth login.

Upload the devserver image to Azure Blob Storage

Generation 1

nix run .#upload-devserver-azure-image

Generation 2

nix run .#upload-devserver-azure-hyperv

Note that in order to upload the built image, the nix run command must be executed in an Azure VM whose Identity has the permission to upload image, or it is executed after a successful az login.

Update devserver to the latest configuration

If you already checked out this repository, run the following command in the work tree: For VM on GCE:

sudo nixos-rebuild switch --flake .#devserverGce

For Azure VM:

sudo nixos-rebuild switch --flake .#devserverAzure

Or under an abitrary path, run

sudo nixos-rebuild switch --flake github:Preemo-Inc/nix-ml-ops#devserverGce

or

sudo nixos-rebuild switch --flake github:Preemo-Inc/nix-ml-ops#devserverAzure

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages