Skip to content

Commit

Permalink
Merge pull request #55 from Pranavkhade/dev
Browse files Browse the repository at this point in the history
Documentation overhaul, minor fixes and API improvements
  • Loading branch information
Pranavkhade authored Jan 19, 2024
2 parents b9827ce + e5f612c commit 4129dcf
Show file tree
Hide file tree
Showing 40 changed files with 954 additions and 921 deletions.
1 change: 1 addition & 0 deletions .github/workflows/python-package.yml
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@ jobs:
run: |
pip install --upgrade pip
pip install pytest
pip install typing-extensions
- run: pip install --editable .
- name: Test with pytest
run: pytest
2 changes: 1 addition & 1 deletion LICENSE
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
MIT License

PACKMAN: PACKing and Motion ANalysis
Copyright (c) 2019 Jernigan Lab, Iowa State University
Copyright (c) 2019 Dr. Pranav Khade

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
Expand Down
6 changes: 2 additions & 4 deletions packman/__init__.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,5 @@
# -*- coding: utf-8 -*-
# Author: Pranav Khade, Iowa State University
# Please read the project licence file for the Copyrights.

# Author: Pranav Khade
"""The py-PACKMAN is a collection of subpackages built on the packman.molecule API.
Please check the corresponding packages and tutorials for more information about the package use.
Expand All @@ -15,4 +13,4 @@


#VERSION CHANGE HERE CHANGES IT IN docs AND setup.py
__version__='1.4.10'
__version__='1.4.11'
82 changes: 41 additions & 41 deletions packman/anm/anm.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
from packman.anm import ANM
help( ANM )
Notes:
Note:
* Tutorial: https://jerniganlab.github.io/Software/PACKMAN/Tutorials/compliance
* For more details about the parameters for compliance, or to site this, read the following paper: https://doi.org/10.1002/prot.25968
Expand All @@ -25,6 +25,8 @@

import numpy

from typing import List

from packman.molecule import Protein, Model, Atom

'''
Expand All @@ -36,37 +38,35 @@
class ANM:
"""This class contains the functions essential to carry out the Anisotropic Network Model and Compliance analysis.
Notes:
Note:
* Tutorial: https://jerniganlab.github.io/Software/PACKMAN/Tutorials/compliance
* For more details about the parameters for compliance, or to site this, read the following paper:
Todo:
* fix init; coords to atoms
* Change the pf in such a way that it is not confusing
* Add set_ functions
Args:
coords ([float]) : Two dimentional array of three dimentional points in the space.
gamma (float, optional): Spring Constant Value. Defaults to 1.0.
dr (float, optional) : Distance Cutoff. Defaults to 15.0.
power (int, optional) : Power of distance (mainly useful in non-parametric mode). Defaults to 0.
pf (None, optional) : Parameter free model. (Check the dr and power params) Defaults to None.
"""

def __init__(self, atoms, gamma=1.0, dr=15.0, power=0, pf=None):
atoms (List[Atom]): List of Atom objects.
gamma (float, optional): Spring Constant Value. Defaults to 1.0.
dr (float, optional): Distance Cutoff. Defaults to 15.0.
power (int, optional): Power of distance (mainly useful in parameter free mode). Defaults to 0.
pf (bool, optional): Parameter-free mode. Defaults to False.
"""
def __init__(self, atoms: List[Atom], gamma: float=1.0, dr: float=15.0, power: int=0, pf: bool=False):
self.gamma = gamma
self.dr = dr
self.power = power
self.pf = pf
self.atoms = [i for i in atoms]
self.coords = numpy.array([i.get_location() for i in self.atoms])
if self.pf is not None and self.pf <= 0:
raise Exception("pf value cannot be zero or negative")

if self.pf is True and self.power <= 0:
raise Exception("Power value cannot be zero or negative")
if self.pf is True and self.power == 0:
raise Exception("Using power is of no use in this case")
if self.gamma <= 0:
raise Exception("gamma value cannot be zero or negative")
if self.dr <= 0:
raise Exception("distance cutoff value cannot be zero or negative")

self.hessian = None
self.fluctuations = None
self.stiffness_map = None
self.compliance_map = None
Expand All @@ -75,87 +75,87 @@ def __init__(self, atoms, gamma=1.0, dr=15.0, power=0, pf=None):


'''Get Functions'''
def get_hessian(self):
def get_hessian(self) -> numpy.ndarray:
"""Get the Hessian Matrix of the ANM model.
Notes:
* Make sure that the ANM().calculate_hessian() is called before calling this function. (will return None otherwise)
Note:
* * Make sure that the ANM().calculate_hessian() is called before calling this function.
Returns:
numpy.ndarray: Hessian matrix if successful; None otherwise
numpy.ndarray: Hessian matrix
"""
return self.hessian

def get_eigenvalues(self):
def get_eigenvalues(self) -> numpy.ndarray:
"""Get the Eigenvalues obtained by decomposing the Hessian Matrix of the ANM model.
Notes:
Note:
* Make sure that the ANM().calculate_hessian() and ANM().calculate_decomposition() is called before calling this function. (will return None otherwise)
Returns:
numpy.ndarray: Eigenvalues if successful; None otherwise
"""
return self.eigen_values

def get_eigenvectors(self):
def get_eigenvectors(self) -> numpy.ndarray:
"""Get the Eigenvectors obtained by decomposing the Hessian Matrix of the ANM model.
Notes:
Note:
* Make sure that the ANM().calculate_hessian() and ANM().calculate_decomposition() is called before calling this function. (will return None otherwise)
Returns:
numpy.ndarray: Eigenvectors if successful; None otherwise
"""
return self.eigen_vectors

def get_fluctuations(self):
def get_fluctuations(self) -> numpy.ndarray:
"""Get the Fluctuations obtained from Eigenvectors and Eigenvalues
Notes:
Note:
* Make sure that the ANM().calculate_hessian(), ANM().calculate_decomposition() and ANM().calculate_fluctuations() is called before calling this function. (will return None otherwise)
Returns:
numpy.ndarray: Eigenvectors if successful; None otherwise
"""
return self.fluctuations

def get_stiffness_map(self):
def get_stiffness_map(self) -> numpy.ndarray:
"""Get the Stiffness Map obtained from Stiffness and Compliance Analysis
Notes:
Note:
* Make sure that the ANM().calculate_hessian(), ANM().calculate_decomposition() and ANM().calculate_stiffness_compliance() is called before calling this function. (will return None otherwise)
* Stiffness=1/Compliance
Returns:
numpy.ndarray: Stiffness Map if successful; None otherwise
"""
return self.stiffness_map

def get_compliance_map(self):
def get_compliance_map(self) -> numpy.ndarray:
"""Get the Compliance Map obtained from Stiffness and Compliance Analysis
Notes:
Note:
* Make sure that the ANM().calculate_hessian(), ANM().calculate_decomposition() and ANM().calculate_stiffness_compliance() is called before calling this function. (will return None otherwise)
* Stiffness=1/Compliance
Returns:
numpy.ndarray: Compliance Map if successful; None otherwise
"""
return self.compliance_map

def get_stiffness_profile(self):
def get_stiffness_profile(self) -> numpy.ndarray:
"""Get the Stiffness profile obtained from Stiffness and Compliance Analysis
Notes:
Note:
* Make sure that the ANM().calculate_hessian(), ANM().calculate_decomposition() and ANM().calculate_stiffness_compliance() is called before calling this function. (will return None otherwise)
* Stiffness=1/Compliance
Returns:
numpy.ndarray: Stiffness profile if successful; None otherwise
"""
return self.stiffness_profile

def get_compliance_profile(self):
def get_compliance_profile(self) -> numpy.ndarray:
"""Get the Compliance profile obtained from Stiffness and Compliance Analysis
Notes:
Note:
* Make sure that the ANM().calculate_hessian(), ANM().calculate_decomposition() and ANM().calculate_stiffness_compliance() is called before calling this function. (will return None otherwise)
* Stiffness=1/Compliance
Returns:
Expand All @@ -165,12 +165,12 @@ def get_compliance_profile(self):


'''Calculate Functions'''
def calculate_hessian(self):
def calculate_hessian(self) -> bool:
"""Build the Hessian Matrix of the ANM model.
This is the most essential step for ANM/ Compliance analysis.
Notes:
Note:
* Hessian matrix is built; use ANM().get_hessian() to obtain the hessian matrix.
"""
n_atoms=len(self.coords)
Expand Down Expand Up @@ -200,7 +200,7 @@ def calculate_hessian(self):
self.hessian=hessian
return True

def calculate_decomposition(self):
def calculate_decomposition(self) -> bool:
"""Decompose the Hessian Matrix of the ANM model.
Note:
Expand All @@ -209,7 +209,7 @@ def calculate_decomposition(self):
self.eigen_values,self.eigen_vectors=numpy.linalg.eigh(self.hessian)
return True

def calculate_fluctuations(self,endmode=None):
def calculate_fluctuations(self, endmode=None) -> bool:
"""Calculate the Fluctuations of the ANM model.
The fluctualtions/ theoretical b-factors are calculated using this method.
Expand All @@ -229,7 +229,7 @@ def calculate_fluctuations(self,endmode=None):
return True


def calculate_stiffness_compliance(self):
def calculate_stiffness_compliance(self) -> bool:
"""Carry out the Stiffness and Compliance analysis of the ANM model.
Citation:
Expand Down Expand Up @@ -273,7 +273,7 @@ def calculate_stiffness_compliance(self):
self.compliance_profile = [numpy.nanmean(i) for i in compliance_map]
return True

def calculate_movie(self, mode_number, scale=1.5, n=20, ftype='cif'):
def calculate_movie(self, mode_number, scale=1.5, n=20, ftype='cif') -> bool:
"""Get the movie of the obtained LINEAR modes. The first frame is the original structure and the projection progresses in positive (+) direction, returning to original structure and then in negative direction (-) again returning to the original structure.
Args:
Expand Down
Loading

0 comments on commit 4129dcf

Please sign in to comment.