Skip to content

Pomu0708/PyDnet

Repository files navigation

PyDnet

Update:

If you are looking Android/iOS implementations of PyDnet, take a look here: https://github.com/FilippoAleotti/mobilePydnet

This repository contains the source code of pydnet, proposed in the paper "Towards real-time unsupervised monocular depth estimation on CPU", IROS 2018. If you use this code in your projects, please cite our paper:

@inproceedings{pydnet18,
  title     = {Towards real-time unsupervised monocular depth estimation on CPU},
  author    = {Poggi, Matteo and
               Aleotti, Filippo and
               Tosi, Fabio and
               Mattoccia, Stefano},
  booktitle = {IEEE/JRS Conference on Intelligent Robots and Systems (IROS)},
  year = {2018}
}

For more details: arXiv

Demo video: youtube

Requirements

  • Tensorflow 1.8 (recommended)
  • python packages such as opencv, matplotlib

Run pydnet on webcam stream

To run pydnet, just launch

python webcam.py --checkpoint_dir ./checkpoint/IROS18/pydnet --resolution [1,2,3]

Run pydnet on ROS

To run pydnet, just launch

python rosdepth.py

Train pydnet from scratch

Requirements

  • monodepth (https://github.com/mrharicot/monodepth) framework by Clément Godard

After you have cloned the monodepth repository, add to it the scripts contained in training_code folder from this repository (you have to replace the original monodepth_model.py script). Then you can train pydnet inside monodepth framework.

Evaluate pydnet on Eigen split

To get results on the Eigen split, just run

python experiments.py --datapath PATH_TO_KITTI --filenames PATH_TO_FILELIST --checkpoint_dir /checkpoint/IROS18/pydnet --resolution [1,2,3]

This script generates disparity.npy, that can be evaluated using the evaluation tools by Clément Godard

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages