Skip to content

Commit

Permalink
Update T1 experiment (quantumlib#6487)
Browse files Browse the repository at this point in the history
* T1 experiment: add A and B constants to fit, make wait times log-spaced

* lowercase variable names

* update tests

* update tests

* update tests

* update tests

* update tests

* update tests

* update tests

* informative assert statements in tests

* use float wait time

* typecheck

* nits
  • Loading branch information
eliottrosenberg authored Mar 13, 2024
1 parent b199841 commit 21854d7
Show file tree
Hide file tree
Showing 2 changed files with 28 additions and 33 deletions.
21 changes: 14 additions & 7 deletions cirq/experiments/t1_decay_experiment.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Optional, TYPE_CHECKING
from typing import Any, Optional, Sequence, TYPE_CHECKING, cast

import warnings
import pandas as pd
Expand Down Expand Up @@ -77,7 +77,12 @@ def t1_decay(

var = sympy.Symbol('delay_ns')

sweep = study.Linspace(var, start=min_delay_nanos, stop=max_delay_nanos, length=num_points)
if min_delay_nanos == 0:
min_delay_nanos = 0.4
sweep_vals_ns = np.unique(
np.round(np.logspace(np.log10(min_delay_nanos), np.log10(max_delay_nanos), num_points))
)
sweep = study.Points(var, cast(Sequence[float], sweep_vals_ns))

circuit = circuits.Circuit(
ops.X(qubit), ops.wait(qubit, nanos=var), ops.measure(qubit, key='output')
Expand Down Expand Up @@ -118,8 +123,8 @@ def data(self) -> pd.DataFrame:
def constant(self) -> float:
"""The t1 decay constant."""

def exp_decay(x, t1):
return np.exp(-x / t1)
def exp_decay(x, t1, a, b):
return a * np.exp(-x / t1) + b

xs = self._data['delay_ns']
ts = self._data['true_count']
Expand All @@ -132,8 +137,8 @@ def exp_decay(x, t1):

# Fit to exponential decay to find the t1 constant
try:
popt, _ = optimize.curve_fit(exp_decay, xs, probs, p0=[t1_guess])
t1 = popt[0]
self.popt, _ = optimize.curve_fit(exp_decay, xs, probs, p0=[t1_guess, 1.0, 0.0])
t1 = self.popt[0]
return t1
except RuntimeError:
warnings.warn("Optimal parameters could not be found for curve fit", RuntimeWarning)
Expand Down Expand Up @@ -166,7 +171,9 @@ def plot(
ax.plot(xs, ts / (fs + ts), 'ro-', **plot_kwargs)

if include_fit and not np.isnan(self.constant):
ax.plot(xs, np.exp(-xs / self.constant), label='curve fit')
t1 = self.constant
t1, a, b = self.popt
ax.plot(xs, a * np.exp(-xs / t1) + b, label='curve fit')
plt.legend()

ax.set_xlabel(r"Delay between initialization and measurement (nanoseconds)")
Expand Down
40 changes: 14 additions & 26 deletions cirq/experiments/t1_decay_experiment_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,15 +53,15 @@ def noisy_moment(self, moment, system_qubits):
repetitions=10,
max_delay=cirq.Duration(nanos=500),
)
results.plot()
results.plot(include_fit=True)


def test_result_eq():
eq = cirq.testing.EqualsTester()
eq.make_equality_group(
lambda: cirq.experiments.T1DecayResult(
data=pd.DataFrame(
columns=['delay_ns', 'false_count', 'true_count'], index=[0], data=[[100.0, 2, 8]]
columns=['delay_ns', 'false_count', 'true_count'], index=[0], data=[[100, 2, 8]]
)
)
)
Expand Down Expand Up @@ -103,7 +103,7 @@ def noisy_moment(self, moment, system_qubits):
data=pd.DataFrame(
columns=['delay_ns', 'false_count', 'true_count'],
index=range(4),
data=[[100.0, 0, 10], [400.0, 0, 10], [700.0, 10, 0], [1000.0, 10, 0]],
data=[[100.0, 0, 10], [215.0, 0, 10], [464.0, 0, 10], [1000.0, 10, 0]],
)
)

Expand All @@ -117,13 +117,14 @@ def test_all_on_results():
min_delay=cirq.Duration(nanos=100),
max_delay=cirq.Duration(micros=1),
)
assert results == cirq.experiments.T1DecayResult(
desired = cirq.experiments.T1DecayResult(
data=pd.DataFrame(
columns=['delay_ns', 'false_count', 'true_count'],
index=range(4),
data=[[100.0, 0, 10], [400.0, 0, 10], [700.0, 0, 10], [1000.0, 0, 10]],
data=[[100.0, 0, 10], [215.0, 0, 10], [464.0, 0, 10], [1000.0, 0, 10]],
)
)
assert results == desired, f'{results.data=} {desired.data=}'


def test_all_off_results():
Expand All @@ -135,13 +136,14 @@ def test_all_off_results():
min_delay=cirq.Duration(nanos=100),
max_delay=cirq.Duration(micros=1),
)
assert results == cirq.experiments.T1DecayResult(
desired = cirq.experiments.T1DecayResult(
data=pd.DataFrame(
columns=['delay_ns', 'false_count', 'true_count'],
index=range(4),
data=[[100.0, 10, 0], [400.0, 10, 0], [700.0, 10, 0], [1000.0, 10, 0]],
data=[[100.0, 10, 0], [215.0, 10, 0], [464.0, 10, 0], [1000.0, 10, 0]],
)
)
assert results == desired, f'{results.data=} {desired.data=}'


@pytest.mark.usefixtures('closefigures')
Expand All @@ -150,28 +152,14 @@ def test_curve_fit_plot_works():
data=pd.DataFrame(
columns=['delay_ns', 'false_count', 'true_count'],
index=range(4),
data=[[100.0, 6, 4], [400.0, 10, 0], [700.0, 10, 0], [1000.0, 10, 0]],
data=[[100.0, 6, 4], [215.0, 10, 0], [464.0, 10, 0], [1000.0, 10, 0]],
)
)

good_fit.plot(include_fit=True)


@pytest.mark.usefixtures('closefigures')
def test_curve_fit_plot_warning():
bad_fit = cirq.experiments.T1DecayResult(
data=pd.DataFrame(
columns=['delay_ns', 'false_count', 'true_count'],
index=range(4),
data=[[100.0, 10, 0], [400.0, 10, 0], [700.0, 10, 0], [1000.0, 10, 0]],
)
)

with pytest.warns(RuntimeWarning, match='Optimal parameters could not be found for curve fit'):
bad_fit.plot(include_fit=True)


@pytest.mark.parametrize('t1', [200, 500, 700])
@pytest.mark.parametrize('t1', [200.0, 500.0, 700.0])
def test_noise_model_continous(t1):
class GradualDecay(cirq.NoiseModel):
def __init__(self, t1: float):
Expand All @@ -196,10 +184,10 @@ def noisy_moment(self, moment, system_qubits):
results = cirq.experiments.t1_decay(
sampler=cirq.DensityMatrixSimulator(noise=GradualDecay(t1)),
qubit=cirq.GridQubit(0, 0),
num_points=4,
num_points=10,
repetitions=10,
min_delay=cirq.Duration(nanos=100),
max_delay=cirq.Duration(micros=1),
min_delay=cirq.Duration(nanos=1),
max_delay=cirq.Duration(micros=10),
)

assert np.isclose(results.constant, t1, 50)
Expand Down

0 comments on commit 21854d7

Please sign in to comment.