Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix expval of Sum with broadcasting #4275

Merged
merged 2 commits into from
Jun 20, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/releases/changelog-0.31.0.md
Original file line number Diff line number Diff line change
Expand Up @@ -447,6 +447,7 @@

* Allow for `Sum` observables with trainable parameters.
[(#4251)](https://github.com/PennyLaneAI/pennylane/pull/4251)
[(#4275)](https://github.com/PennyLaneAI/pennylane/pull/4275)

<h3>Contributors ✍️</h3>

Expand Down
9 changes: 6 additions & 3 deletions pennylane/devices/default_qubit.py
Original file line number Diff line number Diff line change
Expand Up @@ -570,10 +570,13 @@ def expval(self, observable, shot_range=None, bin_size=None):
Hamiltonian is not NumPy or Autograd

"""
is_state_batched = self._ndim(self.state) == 2
# intercept Sums
if isinstance(observable, Sum) and not self.shots:
return measure(
ExpectationMP(observable.map_wires(self.wire_map)), self._pre_rotated_state
ExpectationMP(observable.map_wires(self.wire_map)),
self._pre_rotated_state,
is_state_batched,
)

# intercept other Hamiltonians
Expand All @@ -592,7 +595,7 @@ def expval(self, observable, shot_range=None, bin_size=None):

if backprop_mode:
# TODO[dwierichs]: This branch is not adapted to broadcasting yet
if self._ndim(self.state) == 2:
if is_state_batched:
raise NotImplementedError(
"Expectation values of Hamiltonians for interface!=None are "
"not supported together with parameter broadcasting yet"
Expand Down Expand Up @@ -632,7 +635,7 @@ def expval(self, observable, shot_range=None, bin_size=None):
Hmat = observable.sparse_matrix(wire_order=self.wires)

state = qml.math.toarray(self.state)
if self._ndim(state) == 2:
if is_state_batched:
res = qml.math.array(
[
csr_matrix.dot(
Expand Down
45 changes: 27 additions & 18 deletions tests/devices/test_default_qubit.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
# pylint: disable=protected-access,cell-var-from-loop
import math

from functools import partial
import pytest

import pennylane as qml
Expand Down Expand Up @@ -2361,22 +2362,28 @@ def test_Hamiltonian_filtered_from_rotations(self, mocker):
assert qml.equal(call_args.measurements[0], qml.expval(qml.PauliX(0)))


@pytest.mark.parametrize("is_state_batched", [False, True])
class TestSumSupport:
"""Tests for custom Sum support in DefaultQubit."""

expected_grad = [-np.sin(1.3), np.cos(1.3)]
@staticmethod
def expected_grad(is_state_batched):
if is_state_batched:
return [[-np.sin(1.3), -np.sin(0.4)], [np.cos(1.3), np.cos(0.4)]]
return [-np.sin(1.3), np.cos(1.3)]

@staticmethod
def circuit(y, z):
qml.RX(1.3, 0)
def circuit(y, z, is_state_batched):
rx_param = [1.3, 0.4] if is_state_batched else 1.3
qml.RX(rx_param, 0)
return qml.expval(
qml.sum(
qml.s_prod(y, qml.PauliY(0)),
qml.s_prod(z, qml.PauliZ(0)),
)
)

def test_super_expval_not_called(self, mocker):
def test_super_expval_not_called(self, is_state_batched, mocker):
"""Tests basic expval result, and ensures QubitDevice.expval is not called."""
dev = qml.device("default.qubit", wires=1)
spy = mocker.spy(qml.QubitDevice, "expval")
Expand All @@ -2385,49 +2392,51 @@ def test_super_expval_not_called(self, mocker):
spy.assert_not_called()

@pytest.mark.autograd
def test_trainable_autograd(self):
def test_trainable_autograd(self, is_state_batched):
"""Tests that coeffs passed to a sum are trainable with autograd."""
if is_state_batched:
pytest.skip(msg="Broadcasting, qml.jacobian and new return types do not work together")
dev = qml.device("default.qubit", wires=1)
qnode = qml.QNode(self.circuit, dev, interface="autograd")
y, z = np.array([1.1, 2.2])
actual = qml.grad(qnode)(y, z)
assert np.allclose(actual, self.expected_grad)
actual = qml.grad(qnode, argnum=[0, 1])(y, z, is_state_batched)
assert np.allclose(actual, self.expected_grad(is_state_batched))

@pytest.mark.torch
def test_trainable_torch(self):
def test_trainable_torch(self, is_state_batched):
"""Tests that coeffs passed to a sum are trainable with torch."""
import torch

dev = qml.device("default.qubit", wires=1)
qnode = qml.QNode(self.circuit, dev, interface="torch")
y, z = torch.tensor(1.1, requires_grad=True), torch.tensor(2.2, requires_grad=True)
qnode(y, z).backward()
actual = [y.grad, z.grad]
assert np.allclose(actual, self.expected_grad)
_qnode = partial(qnode, is_state_batched=is_state_batched)
actual = torch.stack(torch.autograd.functional.jacobian(_qnode, (y, z)))
assert np.allclose(actual, self.expected_grad(is_state_batched))

@pytest.mark.tf
def test_trainable_tf(self):
def test_trainable_tf(self, is_state_batched):
"""Tests that coeffs passed to a sum are trainable with tf."""
import tensorflow as tf

dev = qml.device("default.qubit", wires=1)
qnode = qml.QNode(self.circuit, dev, interface="tensorflow")
y, z = tf.Variable(1.1, dtype=tf.float64), tf.Variable(2.2, dtype=tf.float64)
with tf.GradientTape() as tape:
res = qnode(y, z)
actual = tape.gradient(res, [y, z])
assert np.allclose(actual, self.expected_grad)
res = qnode(y, z, is_state_batched)
actual = tape.jacobian(res, [y, z])
assert np.allclose(actual, self.expected_grad(is_state_batched))

@pytest.mark.jax
def test_trainable_jax(self):
def test_trainable_jax(self, is_state_batched):
"""Tests that coeffs passed to a sum are trainable with jax."""
import jax

dev = qml.device("default.qubit", wires=1)
qnode = qml.QNode(self.circuit, dev, interface="jax")
y, z = jax.numpy.array([1.1, 2.2])
actual = jax.grad(qnode, argnums=[0, 1])(y, z)
assert np.allclose(actual, self.expected_grad)
actual = jax.jacobian(qnode, argnums=[0, 1])(y, z, is_state_batched)
assert np.allclose(actual, self.expected_grad(is_state_batched))


class TestGetBatchSize:
Expand Down