Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Parallel training for MobileNet-SSD. #746

Merged
merged 1 commit into from
Mar 21, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
68 changes: 51 additions & 17 deletions fluid/object_detection/train.py
Original file line number Diff line number Diff line change
@@ -1,13 +1,24 @@
import paddle.v2 as paddle
import paddle.fluid as fluid
import os
import reader
import numpy as np
import load_model as load_model
from mobilenet_ssd import mobile_net
from utility import add_arguments, print_arguments
import os
import numpy as np
import argparse
import functools

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('parallel', bool, True, "Whether use parallel training.")
add_arg('use_gpu', bool, True, "Whether use GPU.")
# yapf: disable


def train(train_file_list,
def train(args,
train_file_list,
val_file_list,
data_args,
learning_rate,
Expand All @@ -25,16 +36,37 @@ def train(train_file_list,
difficult = fluid.layers.data(
name='gt_difficult', shape=[1], dtype='int32', lod_level=1)

mbox_locs, mbox_confs, box, box_var = mobile_net(image, image_shape)
nmsed_out = fluid.layers.detection_output(
mbox_locs, mbox_confs, box, box_var, nms_threshold=0.45)
loss_vec = fluid.layers.ssd_loss(mbox_locs, mbox_confs, gt_box, gt_label,
if args.parallel:
places = fluid.layers.get_places()
pd = fluid.layers.ParallelDo(places)
with pd.do():
image_ = pd.read_input(image)
gt_box_ = pd.read_input(gt_box)
gt_label_ = pd.read_input(gt_label)
difficult_ = pd.read_input(difficult)
locs, confs, box, box_var = mobile_net(image_, image_shape)
loss = fluid.layers.ssd_loss(locs, confs, gt_box_, gt_label_,
box, box_var)
pd.write_output(loss)
pd.write_output(locs)
pd.write_output(confs)
pd.write_output(box)
pd.write_output(box_var)

loss, locs, confs, box, box_var = pd()
loss = fluid.layers.reduce_sum(loss)
else:
locs, confs, box, box_var = mobile_net(image, image_shape)
nmsed_out = fluid.layers.detection_output(
locs, mbox_confs, box, box_var, nms_threshold=0.45)
loss = fluid.layers.ssd_loss(locs, mbox_confs, gt_box, gt_label,
box, box_var)
loss = fluid.layers.nn.reduce_sum(loss_vec)
loss = fluid.layers.reduce_sum(loss)

map_eval = None
test_program = fluid.default_main_program().clone(for_test=True)
with fluid.program_guard(test_program):
nmsed_out = fluid.layers.detection_output(
locs, confs, box, box_var, nms_threshold=0.45)
map_eval = fluid.evaluator.DetectionMAP(
nmsed_out,
gt_label,
Expand All @@ -56,7 +88,7 @@ def train(train_file_list,

optimizer.minimize(loss)

place = fluid.CUDAPlace(0)
place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())

Expand Down Expand Up @@ -97,16 +129,18 @@ def test(pass_id):


if __name__ == '__main__':
args = parser.parse_args()
print_arguments(args)
data_args = reader.Settings(
data_dir='./data',
label_file='label_list',
resize_h=300,
resize_w=300,
mean_value=[127.5, 127.5, 127.5])
train(
train_file_list='./data/trainval.txt',
val_file_list='./data/test.txt',
data_args=data_args,
learning_rate=0.001,
batch_size=32,
num_passes=300)
train(args,
train_file_list='./data/trainval.txt',
val_file_list='./data/test.txt',
data_args=data_args,
learning_rate=0.001,
batch_size=32,
num_passes=300)
62 changes: 62 additions & 0 deletions fluid/object_detection/utility.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
"""Contains common utility functions."""
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import distutils.util
import numpy as np
from paddle.fluid import core


def print_arguments(args):
"""Print argparse's arguments.

Usage:

.. code-block:: python

parser = argparse.ArgumentParser()
parser.add_argument("name", default="Jonh", type=str, help="User name.")
args = parser.parse_args()
print_arguments(args)

:param args: Input argparse.Namespace for printing.
:type args: argparse.Namespace
"""
print("----------- Configuration Arguments -----------")
for arg, value in sorted(vars(args).iteritems()):
print("%s: %s" % (arg, value))
print("------------------------------------------------")


def add_arguments(argname, type, default, help, argparser, **kwargs):
"""Add argparse's argument.

Usage:

.. code-block:: python

parser = argparse.ArgumentParser()
add_argument("name", str, "Jonh", "User name.", parser)
args = parser.parse_args()
"""
type = distutils.util.strtobool if type == bool else type
argparser.add_argument(
"--" + argname,
default=default,
type=type,
help=help + ' Default: %(default)s.',
**kwargs)