Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[API 2.0] Fix Chinese doc of api sum. #2433

Merged
merged 2 commits into from
Aug 22, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 29 additions & 31 deletions doc/fluid/api_cn/tensor_cn/sum_cn.rst
Original file line number Diff line number Diff line change
Expand Up @@ -3,47 +3,45 @@
sum
-------------------------------

.. py:function:: paddle.sum(input, dim=None, dtype=None, keep_dim=False, name=None)

:alias_main: paddle.sum
:alias: paddle.sum,paddle.tensor.sum,paddle.tensor.math.sum
:update_api: paddle.fluid.layers.reduce_sum


.. py:function:: paddle.sum(x, axis=None, dtype=None, keepdim=False, name=None)

该OP是对指定维度上的Tensor元素进行求和运算,并输出相应的计算结果。

参数:
- **input** (Variable)- 输入变量为多维Tensor或LoDTensor,支持数据类型为float32,float64,int32,int64。
- **dim** (list | int ,可选)- 求和运算的维度。如果为None,则计算所有元素的和并返回包含单个元素的Tensor变量,否则必须在 :math:`[−rank(input),rank(input)]` 范围内。如果 :math:`dim [i] <0` ,则维度将变为 :math:`rank+dim[i]` ,默认值为None。
- **x** (Tensor)- 输入变量为多维Tensor,支持数据类型为float32,float64,int32,int64。
- **axis** (int | list | tuple ,可选)- 求和运算的维度。如果为None,则计算所有元素的和并返回包含单个元素的Tensor变量,否则必须在 :math:`[−rank(x),rank(x)]` 范围内。如果 :math:`axis [i] <0` ,则维度将变为 :math:`rank+axis[i]` ,默认值为None。
- **dtype** (str , 可选)- 输出变量的数据类型。若参数为空,则输出变量的数据类型和输入变量相同,默认值为None。
- **keep_dim** (bool)- 是否在输出Tensor中保留减小的维度。如 keep_dim 为true,否则结果张量的维度将比输入张量小,默认值为False。
- **keepdim** (bool)- 是否在输出Tensor中保留减小的维度。如 keepdim 为true,否则结果张量的维度将比输入张量小,默认值为False。
- **name** (str , 可选)- 具体用法请参见 :ref:`api_guide_Name` ,一般无需设置,默认值为None。

返回: 在指定dim上进行求和运算的Tensor,数据类型和输入数据类型一致。
返回:
``Tensor``,在指定维度上进行求和运算的Tensor,数据类型和输入数据类型一致。

返回类型: 变量(Variable)

**代码示例**

.. code-block:: python

import paddle
import paddle.fluid as fluid
# x是一个Tensor,元素如下:
# [[0.2, 0.3, 0.5, 0.9]
# [0.1, 0.2, 0.6, 0.7]]
# 接下来的示例中,我们在每处函数调用后面都标注出了它的结果张量。
x = fluid.data(name='x', shape=[2, 4], dtype='float32')
out1 = paddle.sum(x) # [3.5]
out2 = paddle.sum(x, dim=0) # [0.3, 0.5, 1.1, 1.6]
out3 = paddle.sum(x, dim=-1) # [1.9, 1.6]
out4 = paddle.sum(x, dim=1, keep_dim=True) # [[1.9], [1.6]]

# y 是一个shape为[2, 2, 2]的Tensor元素如下:
# [[[1, 2], [3, 4]],
# [[5, 6], [7, 8]]]
# 接下来的示例中,我们在每处函数调用后面都标注出了它的结果张量。
y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
out5 = paddle.sum(y, dim=[1, 2]) # [10, 26]
out6 = paddle.sum(y, dim=[0, 1]) # [16, 20]
import numpy as np
import paddle
paddle.disable_static()

# x is a Tensor variable with following elements:
liym27 marked this conversation as resolved.
Show resolved Hide resolved
# [[0.2, 0.3, 0.5, 0.9]
# [0.1, 0.2, 0.6, 0.7]]
# Each example is followed by the corresponding output tensor.
x_data = np.array([[0.2, 0.3, 0.5, 0.9],[0.1, 0.2, 0.6, 0.7]]).astype('float32')
x = paddle.to_tensor(x_data)
out1 = paddle.sum(x) # [3.5]
out2 = paddle.sum(x, axis=0) # [0.3, 0.5, 1.1, 1.6]
out3 = paddle.sum(x, axis=-1) # [1.9, 1.6]
out4 = paddle.sum(x, axis=1, keepdim=True) # [[1.9], [1.6]]

# y is a Tensor variable with shape [2, 2, 2] and elements as below:
# [[[1, 2], [3, 4]],
# [[5, 6], [7, 8]]]
# Each example is followed by the corresponding output tensor.
y_data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]).astype('float32')
y = paddle.to_tensor(y_data)
out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]