-
Notifications
You must be signed in to change notification settings - Fork 271
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
【Hackathon No.77】为神经网络编译器 CINN 增加 squeeze 算子 (#182)
As the title
- Loading branch information
Showing
1 changed file
with
172 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,172 @@ | ||
# CINN squeeze 设计文档 | ||
|
||
| API名称 | 新增API名称 | | ||
| ---------------------------------------------------------- | -------------------------------------- | | ||
| 提交作者<input type="checkbox" class="rowselector hidden"> | 六个骨头 | | ||
| 提交时间<input type="checkbox" class="rowselector hidden"> | 2022-07-11 | | ||
| 版本号 | V1.0 | | ||
| 依赖CINN版本<input type="checkbox" class="rowselector hidden"> | develop | | ||
| 文件名 | 20220711_api_design_for_squeeze.md<br> | | ||
|
||
# 一、概述 | ||
|
||
## 1、相关背景 | ||
|
||
`squeeze` 是众多神经网络编译器中基础的算子, | ||
例如将卷积输出$(256, 1, 1)$输入线性层中时,可以直接使 `squeeze`将维度变为$(256)$, | ||
因此为了提升 CINN API 丰富度,需要扩充 API `squeeze`。 | ||
|
||
## 2、名词解释 | ||
|
||
张量/Tensor:指高维数组。 | ||
squeeze:指删除尺寸为1的维度,可以是指定某个维度,也可以是所有维度。 | ||
axis:指张量的维度。 | ||
|
||
## 3、功能目标 | ||
|
||
实现 squeeze 功能,删除张量指定尺寸为一的维度。 | ||
|
||
例如,对于张量 $A = (N, 1, 1, M, 1, K)$, | ||
squeeze( $A$, axis = None) 结果尺寸为$(N, M, K)$, | ||
squeeze( $A$, axis = 1) 结果尺寸为$(N, 1, M, 1, K)$, | ||
squeeze( $A$, axis = [1, 2]) 结果尺寸为$(N, M, 1, K)$,且数据值不变。 | ||
|
||
## 4、意义 | ||
|
||
为神经网络编译器 CINN 增加基础算子 `squeeze`。 | ||
|
||
# 二、CINN现状 | ||
|
||
对CINN框架目前不支持此功能,可以使用 reshape API 替代,但使用 reshape API 需要明确的知道数据的尺寸,对开发者的精力消耗较大,因此有必要实现 squeeze API。 | ||
|
||
# 三、业内方案调研 | ||
|
||
- TVM:通过遍历 shape,删除为1的维度并调用 reshape 相关 API 实现。 | ||
```cpp | ||
inline Tensor squeeze(const Tensor& x, Array<Integer> axis, bool atleast1d = false, | ||
std::string name = "T_squeeze", std::string tag = kInjective) { | ||
auto ndim = x->shape.size(); | ||
std::vector<int> axis_val; | ||
if (!axis.defined() || axis.size() == 0) { | ||
for (size_t i = 0; i < ndim; ++i) { | ||
if (IsConstInt(x->shape[i]) && GetConstInt(x->shape[i]) == 1) { | ||
axis_val.push_back(static_cast<int>(i)); | ||
} | ||
} | ||
} else { | ||
for (size_t i = 0; i < axis.size(); ++i) { | ||
int64_t val = axis[i]->value; | ||
if (val < 0) { | ||
val += static_cast<int>(x->shape.size()); | ||
} | ||
if (IsConstInt(x->shape[val])) { | ||
ICHECK_EQ(GetConstInt(x->shape[val]), 1) << "Dimension " << val << " must have size 1"; | ||
} | ||
axis_val.push_back(val); | ||
} | ||
} | ||
|
||
std::unordered_set<int> axis_set(axis_val.begin(), axis_val.end()); | ||
|
||
Array<PrimExpr> out_shape; | ||
for (size_t i = 0; i < ndim; ++i) { | ||
if (axis_set.count(static_cast<int>(i)) == 0) { | ||
out_shape.push_back(x->shape[i]); | ||
} | ||
} | ||
if (out_shape.size() == 0 && atleast1d) { | ||
out_shape.push_back(1); | ||
} | ||
|
||
return compute( | ||
out_shape, | ||
[&](const Array<Var>& indices) { | ||
Array<PrimExpr> real_indices; | ||
int flag = 0; | ||
for (size_t i = 0; i < ndim; ++i) { | ||
if (axis_set.count(static_cast<int>(i)) == 0) { | ||
real_indices.push_back(indices[i - flag]); | ||
} else { | ||
real_indices.push_back(0); | ||
flag += 1; | ||
} | ||
} | ||
return x(real_indices); | ||
}, | ||
name, tag); | ||
} | ||
``` | ||
- XLA:通过遍历 shape,删除为1的维度并调用 reshape 相关 API 实现。 | ||
```cpp | ||
xla::XlaOp SqueezeAllTrivialDimensions(xla::XlaOp input) { | ||
const xla::Shape& input_shape = XlaHelpers::ShapeOfXlaOp(input); | ||
auto output_sizes = | ||
BuildSqueezedDimensions(input_shape.dimensions(), /*squeeze_dim=*/-1); | ||
return XlaHelpers::DynamicReshape(input, output_sizes); | ||
} | ||
``` | ||
|
||
# 四、对比分析 | ||
|
||
TVM 与 XLA 实现方案类似。 | ||
|
||
# 五、设计思路与实现方案 | ||
|
||
## 命名与参数设计 | ||
|
||
- A:输入张量 | ||
- axis:要删除的维度集合 | ||
- name:输出名称 | ||
|
||
## 底层OP设计 | ||
|
||
1. 在 `cinn/hlir/pe/transform.cc` 里实现 `squeeze` 算子。 | ||
2. 在 `cinn/hlir/op/transform.h` 里声明相应的 `strategy`。 | ||
3. 在 `cinn/hlir/op/transform.cc` 里实现相应的 `strategy`。 | ||
|
||
## API实现方案 | ||
|
||
实现目标为对于张量 $A = (N, 1, 1, M, 1, K)$, | ||
squeeze( $A$, axis = 1) 结果尺寸为$(N, 1, M, 1, K)$, | ||
squeeze( $A$, axis = [1, 2]) 结果尺寸为$(N, M, 1, K)$, | ||
squeeze( $A$, axis = None) 结果尺寸为$(N, M, K)$,且数据值不变。 | ||
|
||
1. 在 `cinn/frontend/base_build.h` 里声明 `BaseBuilder::Squeeze`。 | ||
2. 在 `cinn/frontend/base_build.cc` 里实现 `BaseBuilder::Squeeze`。 | ||
3. 在 `cinn/pybind/frontend` 对 Python 类 `BaseBuilder` 添加 `squeeze` 接口,并绑定到 `BaseBuilder::Squeeze`。 | ||
4. 上层 `load_paddle_model` 调用提交到 `cinn/frontend/paddle_model_to_program.h` 和 `.cc` 文件下。 | ||
|
||
通过使用 Builder 类的方法调用 squeeze。 | ||
```python | ||
builder = CinnBuilder("test_basic") | ||
a = builder.create_input(Float(32), (1, 24, 16, 1, 16, 16), "A1") | ||
b = builder.squeeze(a) # 与 a = builder.squeeze(a,axis=None) 等价。shape=(24, 16, 16, 16) | ||
a = builder.create_input(Float(32), (1, 24, 16, 1, 16, 16), "A2") | ||
b = builder.squeeze(a,axis=0) # shape=(24, 16, 1, 16, 16) | ||
a = builder.create_input(Float(32), (1, 24, 16, 1, 16, 16), "A3") | ||
b = builder.squeeze(a,axis=3) # shape=(1, 24, 16, 16, 16) | ||
a = builder.create_input(Float(32), (1, 24, 16, 1, 16, 16), "A4") | ||
b = builder.squeeze(a,axis=4) # raise error | ||
``` | ||
|
||
# 六、测试和验收的考量 | ||
|
||
1. 提供基础的 demo 文件。 | ||
2. 在`cinn/hlir/pe/pe_transform_test.cc`和`cinn/hlir/op/transform_test.cc`中添加对底层OP进行测试的代码。 | ||
3. 在`python/tests`文件夹中添加对Python API进行测试的代码。 | ||
4. 提交 API 使用方法到相应的文档中。 | ||
|
||
# 七、可行性分析和排期规划 | ||
|
||
- 可行性分析:非常可行 | ||
- 排期规划:底层OP设计已完成,API实现方案即将完成,测试和文档部分预计7月20日前完成。 | ||
|
||
# 八、影响面 | ||
|
||
对其他模块无影响。 | ||
|
||
# 附件及参考资料 | ||
|
||
[CINN文档](https://paddlepaddle.github.io/CINN/) |