Skip to content
This repository has been archived by the owner on Jan 24, 2024. It is now read-only.

Doc 3 #721

Open
wants to merge 19 commits into
base: develop
Choose a base branch
from
Open

Doc 3 #721

wants to merge 19 commits into from

Conversation

JesseyXujin
Copy link
Contributor

No description provided.

@JesseyXujin JesseyXujin requested a review from shanyi15 May 26, 2019 05:14
@@ -21,6 +21,10 @@

本章我们所要介绍的深度学习模型克服了BOW表示的上述缺陷,它在考虑词顺序的基础上把文本映射到低维度的语义空间,并且以端对端(end to end)的方式进行文本表示及分类,其性能相对于传统方法有显著的提升\[[1](#参考文献)\]。

## 硬件环境的要求
本文档支持GPU训练,如果您使用了本文配套的docker镜像,请注意:该镜像对GPU的支持仅限于CUDA 8,cuDNN 5
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

CPU支持吗?

$$ h_t=Recrurent(x_t,h_{t-1})$$
<p align="center">
<img src="https://github.com/JesseyXujin/book/blob/doc_1/06.understand_sentiment/image/formula_rnn_2.png?raw=true" width = "50%" align="center"/><br/>
</p>
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这张公式图片有一个阴影,方便的话替换一张吧

@@ -77,7 +86,9 @@ $$ h_t = o_t\odot tanh(c_t) $$

LSTM通过给简单的循环神经网络增加记忆及控制门的方式,增强了其处理远距离依赖问题的能力。类似原理的改进还有Gated Recurrent Unit (GRU)\[[8](#参考文献)\],其设计更为简洁一些。**这些改进虽然各有不同,但是它们的宏观描述却与简单的循环神经网络一样(如图2所示),即隐状态依据当前输入及前一时刻的隐状态来改变,不断地循环这一过程直至输入处理完毕:**

$$ h_t=Recrurent(x_t,h_{t-1})$$
<p align="center">
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

公式地址请留官方repo的地址

## 硬件环境的要求
本文档支持CPU和GPU训练,如果您使用了本文配套的docker镜像,请注意:该镜像对GPU的支持仅限于CUDA 8,cuDNN 5。


Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
### 说明: ###
1. 硬件环境要求:
本文可支持在CPU、GPU下运行
2. Docker镜像支持的CUDA/cuDNN版本:
如果使用了Docker运行Book,请注意:这里所提供的默认镜像的GPU环境为 CUDA 8/cuDNN 5,对于NVIDIA Tesla V100等要求CUDA 9的 GPU,使用该镜像可能会运行失败。
3. 文档和脚本中代码的一致性问题:
请注意:为使本文更加易读易用,我们拆分、调整了train.py的代码并放入本文。本文中代码与train.py的运行结果一致,可直接运行[train.py](url)进行验证。

$$h_t=f(x_t,h_{t-1})=\sigma(W_{xh}x_t+W_{hh}h_{t-1}+b_h)$$
<p align="center">
<img src="https://github.com/JesseyXujin/book/blob/doc_3/06.understand_sentiment/image/formula_rnn.png?raw=true" width = "65%" align="center"/><br/>
</p>
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

链接最好可以用book 仓库下的图片链接,虽然无法预览,但是等pr merge之后就可以了

@CLAassistant
Copy link

CLA assistant check
Thank you for your submission! We really appreciate it. Like many open source projects, we ask that you all sign our Contributor License Agreement before we can accept your contribution.
1 out of 2 committers have signed the CLA.

✅ JesseyXujin
❌ xujin07


xujin07 seems not to be a GitHub user. You need a GitHub account to be able to sign the CLA. If you have already a GitHub account, please add the email address used for this commit to your account.
You have signed the CLA already but the status is still pending? Let us recheck it.

Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants