Skip to content

Commit

Permalink
update1
Browse files Browse the repository at this point in the history
  • Loading branch information
lijialin03 committed Nov 8, 2023
1 parent dd153c6 commit 5243c32
Show file tree
Hide file tree
Showing 14 changed files with 1,536 additions and 1,299 deletions.
File renamed without changes.
375 changes: 375 additions & 0 deletions jointContribution/graphGalerkin/LinearElasticity.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,375 @@
import sys

import matplotlib.pyplot as plt
import numpy as np
import paddle
from scipy.io import loadmat

sys.path.insert(0, "pycamotk")
from pyCaMOtk.create_dbc_strct import create_dbc_strct
from pyCaMOtk.create_fem_resjac import create_fem_resjac
from pyCaMOtk.create_femsp_cg import create_femsp_cg
from pyCaMOtk.create_mesh_hcube import mesh_hcube
from pyCaMOtk.geom_mltdim import Hypercube
from pyCaMOtk.geom_mltdim import Simplex
from pyCaMOtk.LinearElasticityHandCode import *
from pyCaMOtk.mesh import Mesh
from pyCaMOtk.mesh import get_gdof_from_bndtag
from pyCaMOtk.solve_fem import solve_fem
from pyCaMOtk.visualize_fem import visualize_fem

sys.path.insert(0, "source")
import setup_prob_eqn_handcode
import TensorFEMCore
from GCNNModel import LinearElasticityNet2D
from GCNNModel import e2vcg2connectivity
from TensorFEMCore import Double
from TensorFEMCore import ReshapeFix
from TensorFEMCore import solve_fem_GCNN

sys.path.insert(0, "utils")
from utils import Data

paddle.seed(0)


class LinearElasticity:
def __init__(self) -> None:
# GCNN model
self.model = LinearElasticityNet2D()

def train(
self,
Ufem,
ndof,
xcg,
connectivity,
LossF,
tol,
maxit,
dbc,
ndim,
nnode,
etype,
e2vcg,
e2bnd,
):
ii = 0
Graph = []
Ue = Double(Ufem.flatten().reshape(ndof, 1))
fcn_id = Double(np.asarray([ii]))
Ue_aug = paddle.concat((fcn_id, Ue), axis=0)
xcg_gcnn = np.zeros((2, 2 * xcg.shape[1]))
for i in range(xcg.shape[1]):
xcg_gcnn[:, 2 * i] = xcg[:, i]
xcg_gcnn[:, 2 * i + 1] = xcg[:, i]
Uin = Double(xcg_gcnn.T)
graph = Data(x=Uin, y=Ue_aug, edge_index=connectivity)
Graph.append(graph)
DataList = [[Graph[0]]]
TrainDataloader = DataList
[self.model, info] = solve_fem_GCNN(
TrainDataloader, LossF, self.model, tol, maxit
)
np.save("modelCircleDet.npy", info)
solution = self.model(Graph[0].to("cuda"))
solution = ReshapeFix(paddle.clone(solution), [len(solution.flatten()), 1], "C")
solution[dbc.dbc_idx] = Double(dbc.dbc_val.reshape([len(dbc.dbc_val), 1]))
solution = solution.detach().cpu().numpy()
xcg_defGCNN = xcg + np.reshape(solution, [ndim, nnode], order="F")
msh_defGCNN = Mesh(etype, xcg_defGCNN, e2vcg, e2bnd, ndim)
uabsGCNN = np.sqrt(
solution[[i for i in range(ndof) if i % 2 == 0]] ** 2
+ solution[[i for i in range(ndof) if i % 2 != 0]] ** 2
)
return msh_defGCNN, uabsGCNN

def plot_hard_way(self, msh_defGCNN, uabsGCNN, e2vcg, msh_def, uabs):
fig = plt.figure()
ax1 = plt.subplot(1, 2, 1)
visualize_fem(
ax1, msh_defGCNN, uabsGCNN[e2vcg], {"plot_elem": False, "nref": 1}, []
)
ax1.set_title("GCNN solution")
ax2 = plt.subplot(1, 2, 2)
visualize_fem(ax2, msh_def, uabs[e2vcg], {"plot_elem": False, "nref": 1}, [])
ax2.set_title("FEM solution")
fig.tight_layout(pad=3.0)
plt.savefig("GCNN.pdf", bbox_inches="tight")

def plot_square(self, msh_defGCNN, uabsGCNN, e2vcg, msh_def, uabs):
plt.figure()
ax1 = plt.subplot(1, 1, 1)
_, cbar1 = visualize_fem(
ax1, msh_defGCNN, uabsGCNN[e2vcg], {"plot_elem": False, "nref": 4}, []
)
ax1.axis("off")
cbar1.remove()
plt.margins(0, 0)
plt.savefig(
"gcnn_2dlinearelasticity_square.png",
bbox_inches="tight",
pad_inches=0,
dpi=800,
)

plt.figure()
ax2 = plt.subplot(1, 1, 1)
_, cbar2 = visualize_fem(
ax2, msh_def, uabs[e2vcg], {"plot_elem": False, "nref": 4}, []
)
ax2.axis("off")
cbar2.remove()
plt.margins(0, 0)
plt.savefig(
"fem_2dlinearelasticity_square.png",
bbox_inches="tight",
pad_inches=0,
dpi=800,
)

def hard_way(self):
# FEM
etype = "simplex"
ndim = 2
dat = loadmat("./msh/cylshk0a-simp-nref0p1.mat")
xcg = dat["xcg"] / 10
e2vcg = dat["e2vcg"] - 1
e2bnd = dat["e2bnd"] - 1
msh = Mesh(etype, xcg, e2vcg, e2bnd, ndim)
xcg = msh.xcg
e2vcg = msh.e2vcg
e2bnd = msh.e2bnd
porder = msh.porder
[ndim, nnode] = xcg.shape
nvar = ndim
ndof = nnode * nvar

lam = lambda x, el: 1
mu = lambda x, el: 1
f = lambda x, el: np.zeros([ndim, 1])
bnd2nbc = [0.0, 1.0, 2.0, 3.0, 4.0]
tb = lambda x, n, bnd, el, fc: np.asarray([[2], [0]]) * (
bnd == 2 or bnd == 2.0 or (bnd - 2) ** 2 < 1e-8
) + np.asarray([[0], [0]])
prob = setup_linelast_base_handcode(ndim, lam, mu, f, tb, bnd2nbc)
# Create finite element space
femsp = create_femsp_cg(prob, msh, porder, e2vcg, porder, e2vcg)
ldof2gdof = femsp.ldof2gdof_var.ldof2gdof
geo = Simplex(ndim, porder)
f2v = geo.f2n
dbc_idx = get_gdof_from_bndtag(
[i for i in range(ndim)], [0], nvar, ldof2gdof, e2bnd, f2v
)
dbc_idx.sort()
dbc_idx = np.asarray(dbc_idx)
dbc_val = 0 * dbc_idx
dbc = create_dbc_strct(ndof, dbc_idx, dbc_val)
femsp.dbc = dbc
tol = 1.0e-8
maxit = 100000
[Ufem, info] = solve_fem(
"cg",
msh.transfdatacontiguous,
femsp.elem,
femsp.elem_data,
femsp.ldof2gdof_eqn.ldof2gdof,
femsp.ldof2gdof_var.ldof2gdof,
msh.e2e,
femsp.spmat,
dbc,
None,
tol,
maxit,
)

xcg_def = xcg + np.reshape(Ufem, [ndim, nnode], order="F")
msh_def = Mesh(etype, xcg_def, e2vcg, e2bnd, ndim)
uabs = np.sqrt(
Ufem[[i for i in range(ndof) if i % 2 == 0]] ** 2
+ Ufem[[i for i in range(ndof) if i % 2 != 0]] ** 2
)
fig = plt.figure()
ax1 = plt.subplot(1, 1, 1)
visualize_fem(ax1, msh_def, uabs[e2vcg], {"plot_elem": False, "nref": 1}, [])
ax1.set_title("FEM solution")
fig.tight_layout(pad=3.0)

idx_xcg = [
i
for i in range(xcg.shape[1])
if 2 * i not in dbc_idx and 2 * i + 1 not in dbc_idx
]

obsidx = np.asarray([5, 11, 26, 32, 38]) # max is 9

idx_whole = []
for i in obsidx:
idx_whole.append(2 * i)
idx_whole.append(2 * i + 1)
obsxcg = msh_def.xcg[:, obsidx]
ax1.plot(obsxcg[0, :], obsxcg[1, :], "o")

dbc_idx_new = np.hstack((dbc_idx, idx_whole))
dbc_val_new = Ufem[dbc_idx_new]
dbc = create_dbc_strct(msh.xcg.shape[1] * nvar, dbc_idx_new, dbc_val_new)

Src_new = self.model.source
K_new = paddle.to_tensor([[0], [0]], dtype="float32").reshape((2,))
parsfuncI = lambda x: paddle.concat((Src_new[0:1], Src_new[1:2], K_new), axis=0)
# GCNN
connectivity = e2vcg2connectivity(e2vcg, "ele")
prob = setup_prob_eqn_handcode.setup_linelast_base_handcode(
ndim, lam, mu, f, tb, bnd2nbc
)
femsp_gcnn = create_femsp_cg(prob, msh, porder, e2vcg, porder, e2vcg, dbc)
LossF = []
fcn = lambda u_: TensorFEMCore.create_fem_resjac(
"cg",
u_,
msh.transfdatacontiguous,
femsp_gcnn.elem,
femsp_gcnn.elem_data,
femsp_gcnn.ldof2gdof_eqn.ldof2gdof,
femsp_gcnn.ldof2gdof_var.ldof2gdof,
msh.e2e,
femsp_gcnn.spmat,
dbc,
[i for i in range(ndof) if i not in dbc_idx],
parsfuncI,
None,
)
LossF.append(fcn)
msh_defGCNN, uabsGCNN = self.train(
Ufem,
ndof,
xcg,
connectivity,
LossF,
tol,
maxit,
dbc,
ndim,
nnode,
etype,
e2vcg,
e2bnd,
)
self.plot_hard_way(msh_defGCNN, uabsGCNN, e2vcg, msh_def, uabs)

def main_square(self):
# FEM
nvar = 2
etype = "hcube"
lims = np.asarray([[0, 1], [0, 1]])
nel = [2, 2]
porder = 2
nf = 4
msh = mesh_hcube(etype, lims, nel, porder).getmsh()
xcg = msh.xcg
e2vcg = msh.e2vcg
e2bnd = msh.e2bnd
porder = msh.porder
[ndim, nnode] = xcg.shape
nvar = ndim
ndof = nnode * nvar

lam = lambda x, el: 1
mu = lambda x, el: 1
f = lambda x, el: np.zeros([ndim, 1])
bnd2nbc = np.asarray([0, 1, 2, 3])
tb = lambda x, n, bnd, el, fc: np.asarray([[0.5], [0]]) * (
(bnd - 2) ** 2 < 1e-8
) + np.asarray([[0], [0]])
prob = setup_linelast_base_handcode(ndim, lam, mu, f, tb, bnd2nbc)
# Create finite element space
femsp = create_femsp_cg(prob, msh, porder, e2vcg, porder, e2vcg)
ldof2gdof = femsp.ldof2gdof_var.ldof2gdof
geo = Hypercube(ndim, porder)
f2v = geo.f2n
dbc_idx = get_gdof_from_bndtag(
[i for i in range(ndim)], [0], nvar, ldof2gdof, e2bnd, f2v
)
dbc_idx.sort()
dbc_idx = np.asarray(dbc_idx)
dbc_val = 0 * dbc_idx
dbc = create_dbc_strct(ndof, dbc_idx, dbc_val)
femsp.dbc = dbc
tol = 1.0e-8
maxit = 4500

[Ufem, info] = solve_fem(
"cg",
msh.transfdatacontiguous,
femsp.elem,
femsp.elem_data,
femsp.ldof2gdof_eqn.ldof2gdof,
femsp.ldof2gdof_var.ldof2gdof,
msh.e2e,
femsp.spmat,
dbc,
None,
tol,
maxit,
)

xcg_def = xcg + np.reshape(Ufem, [ndim, nnode], order="F")
msh_def = Mesh(etype, xcg_def, e2vcg, e2bnd, ndim)
uabs = np.sqrt(
Ufem[[i for i in range(ndof) if i % 2 == 0]] ** 2
+ Ufem[[i for i in range(ndof) if i % 2 != 0]] ** 2
)
# GCNN
connectivity = e2vcg2connectivity(e2vcg, "ele")
prob = setup_prob_eqn_handcode.setup_linelast_base_handcode(
ndim, lam, mu, f, tb, bnd2nbc
)
femsp_gcnn = create_femsp_cg(prob, msh, porder, e2vcg, porder, e2vcg, dbc)
LossF = []
fcn = lambda u_: TensorFEMCore.create_fem_resjac(
"cg",
u_,
msh.transfdatacontiguous,
femsp_gcnn.elem,
femsp_gcnn.elem_data,
femsp_gcnn.ldof2gdof_eqn.ldof2gdof,
femsp_gcnn.ldof2gdof_var.ldof2gdof,
msh.e2e,
femsp_gcnn.spmat,
dbc,
)
fcn_fem = lambda u_: create_fem_resjac(
"cg",
u_,
msh.transfdatacontiguous,
femsp.elem,
femsp.elem_data,
femsp.ldof2gdof_eqn.ldof2gdof,
femsp.ldof2gdof_var.ldof2gdof,
msh.e2e,
femsp.spmat,
dbc,
)
LossF.append(fcn)
msh_defGCNN, uabsGCNN = self.train(
Ufem,
ndof,
xcg,
connectivity,
LossF,
tol,
maxit,
dbc,
ndim,
nnode,
etype,
e2vcg,
e2bnd,
)
self.plot_square(msh_defGCNN, uabsGCNN, e2vcg, msh_def, uabs)


if __name__ == "__main__":
le_obj = LinearElasticity()
le_obj.hard_way()
le_obj.main_square()
8 changes: 0 additions & 8 deletions jointContribution/graphGalerkin/ModelSource.txt

This file was deleted.

Loading

0 comments on commit 5243c32

Please sign in to comment.