Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix sendrecv port bind #9595

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions paddle/fluid/operators/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -193,6 +193,7 @@ if(WITH_DISTRIBUTE)
set_source_files_properties(send_vars_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
op_library(send_barrier_op DEPS ${DISTRIBUTE_DEPS})
set_source_files_properties(send_barrier_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
set_source_files_properties(send_recv_op_test.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please remove the use of set_source_files_properties as discussed in #9612

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Because of grpc implementation, we have to use this when linking with grpc, and this can not be present at generic.cmake.

cc_test(test_send_recv SRCS send_recv_op_test.cc DEPS prefetch_op send_op listen_and_serv_op sum_op executor)
else()
set(DEPS_OPS ${DEPS_OPS} send_op prefetch_op recv_op listen_and_serv_op send_vars_op send_barrier_op)
Expand Down
6 changes: 4 additions & 2 deletions paddle/fluid/operators/detail/grpc_server.cc
Original file line number Diff line number Diff line change
Expand Up @@ -186,7 +186,8 @@ void AsyncGRPCServer::WaitClientGet(int count) {

void AsyncGRPCServer::RunSyncUpdate() {
::grpc::ServerBuilder builder;
builder.AddListeningPort(address_, ::grpc::InsecureServerCredentials());
builder.AddListeningPort(address_, ::grpc::InsecureServerCredentials(),
&selected_port_);
builder.SetMaxSendMessageSize(std::numeric_limits<int>::max());
builder.SetMaxReceiveMessageSize(std::numeric_limits<int>::max());
builder.RegisterService(&service_);
Expand All @@ -196,7 +197,8 @@ void AsyncGRPCServer::RunSyncUpdate() {
cq_prefetch_ = builder.AddCompletionQueue();

server_ = builder.BuildAndStart();
LOG(INFO) << "Server listening on " << address_ << std::endl;
LOG(INFO) << "Server listening on " << address_
<< " selected port: " << selected_port_;

std::function<void()> send_register =
std::bind(&AsyncGRPCServer::TryToRegisterNewSendOne, this);
Expand Down
3 changes: 3 additions & 0 deletions paddle/fluid/operators/detail/grpc_server.h
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,8 @@ class AsyncGRPCServer final {

void SetExecutor(framework::Executor *executor) { executor_ = executor; }

int GetSelectedPort() { return selected_port_; }

const ReceivedMessage Get() { return this->var_recv_queue_.Pop(); }

void Push(const std::string &msg_name) {
Expand Down Expand Up @@ -109,6 +111,7 @@ class AsyncGRPCServer final {
int prefetch_blk_id_;
framework::ProgramDesc *program_;
framework::Executor *executor_;
int selected_port_;
};

}; // namespace detail
Expand Down
263 changes: 126 additions & 137 deletions paddle/fluid/operators/listen_and_serv_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -12,20 +12,14 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <stdint.h>
#include <ostream>
#include <thread>

#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/threadpool.h"
#include "paddle/fluid/operators/detail/grpc_server.h"
#include "paddle/fluid/operators/listen_and_serv_op.h"

namespace paddle {
namespace operators {

constexpr char kOptimizeBlock[] = "OptimizeBlock";

void RunServer(std::shared_ptr<detail::AsyncGRPCServer> service) {
service->RunSyncUpdate();
VLOG(4) << "RunServer thread end";
Expand Down Expand Up @@ -66,143 +60,138 @@ static void ParallelExecuteBlocks(
for (size_t i = 0; i < fs.size(); ++i) fs[i].wait();
}

class ListenAndServOp : public framework::OperatorBase {
public:
ListenAndServOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {
if (!rpc_service_) {
std::string endpoint = Attr<std::string>("endpoint");
rpc_service_.reset(new detail::AsyncGRPCServer(endpoint));
server_thread_.reset(new std::thread(RunServer, rpc_service_));
}
}
ListenAndServOp::ListenAndServOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {}

void Stop() override {
rpc_service_->Push(LISTEN_TERMINATE_MESSAGE);
server_thread_->join();
int ListenAndServOp::GetSelectedPort() {
return rpc_service_->GetSelectedPort();
}

void ListenAndServOp::Stop() {
rpc_service_->Push(LISTEN_TERMINATE_MESSAGE);
server_thread_->join();
}

void ListenAndServOp::RunImpl(const framework::Scope &scope,
const platform::Place &dev_place) const {
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(dev_place);
framework::Scope &recv_scope = scope.NewScope();

if (!rpc_service_) {
std::string endpoint = Attr<std::string>("endpoint");
rpc_service_.reset(new detail::AsyncGRPCServer(endpoint));
}

void RunImpl(const framework::Scope &scope,
const platform::Place &dev_place) const override {
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(dev_place);
framework::Scope &recv_scope = scope.NewScope();

// FIXME(Yancey1989): initialize rpc server with lazy mode.
rpc_service_->SetScope(&recv_scope);
rpc_service_->SetDevCtx(&dev_ctx);
auto ins = Inputs("X");
auto fan_in = Attr<int>("Fanin");

auto *block = Attr<framework::BlockDesc *>(kOptimizeBlock);
auto *program = block->Program();
size_t num_blocks = program->Size();
PADDLE_ENFORCE_GE(num_blocks, 2,
"server program should have at least 2 blocks");

framework::Executor executor(dev_place);
std::vector<int> block_list;
for (size_t blkid = 1; blkid < num_blocks; ++blkid)
block_list.push_back(blkid);
auto prepared = executor.Prepare(*program, block_list);
prepared.insert(
prepared.begin(),
std::shared_ptr<framework::ExecutorPrepareContext>(nullptr));

// TODO(qiao) set proper fields for table lookup and update
rpc_service_->SetExecutor(&executor);
rpc_service_->SetPrefetchBlkdId(0);
rpc_service_->SetProgram(program);

// TODO(typhoonzero): change this to a while_op for every cluster-batch.
bool exit_flag = false;
// Record received sparse variables, so that
// we could reset those after execute optimize program
std::vector<framework::Variable *> sparse_vars;
while (!exit_flag) {
// Get from multiple trainers, we don't care about the order in which
// the gradients arrives, just add suffix 0~n and merge the gradient.
rpc_service_->SetCond(0);
size_t recv_var_cnt = 0;
int batch_barrier = 0;
while (batch_barrier != fan_in) {
const detail::ReceivedMessage v = rpc_service_->Get();
auto recv_var_name = v.first;
if (recv_var_name == LISTEN_TERMINATE_MESSAGE) {
LOG(INFO) << "received terminate message and exit";
exit_flag = true;
break;
} else if (recv_var_name == BATCH_BARRIER_MESSAGE) {
VLOG(3) << "recv batch barrier message";
batch_barrier++;
continue;
} else {
VLOG(3) << "received grad: " << recv_var_name;
recv_var_cnt++;
auto var = v.second->GetVar();
if (var == nullptr) {
LOG(ERROR) << "Can not find server side var: " << recv_var_name;
PADDLE_THROW("Can not find server side var");
}
if (var->IsType<framework::SelectedRows>()) {
sparse_vars.push_back(var);
}
}
}
if (exit_flag) {
rpc_service_->SetCond(1);
rpc_service_->ShutDown();
auto ins = Inputs("X");
auto fan_in = Attr<int>("Fanin");
auto *block = Attr<framework::BlockDesc *>(kOptimizeBlock);
auto *program = block->Program();
size_t num_blocks = program->Size();
PADDLE_ENFORCE_GE(num_blocks, 2,
"server program should have at least 2 blocks");

framework::Executor executor(dev_place);
std::vector<int> block_list;
for (size_t blkid = 1; blkid < num_blocks; ++blkid) {
block_list.push_back(blkid);
}
auto prepared = executor.Prepare(*program, block_list);
// Insert placeholder for block0 which holds current op itself.
prepared.insert(prepared.begin(),
std::shared_ptr<framework::ExecutorPrepareContext>(nullptr));

rpc_service_->SetScope(&recv_scope);
rpc_service_->SetDevCtx(&dev_ctx);
// TODO(qiao) set proper fields for table lookup and update
rpc_service_->SetExecutor(&executor);
rpc_service_->SetPrefetchBlkdId(0);
rpc_service_->SetProgram(program);
// start the server listening after all member initialized.
server_thread_.reset(new std::thread(RunServer, rpc_service_));
// FIXME(typhoonzero): do we need to wait until the server port is ready?
sleep(5);

// TODO(typhoonzero): change this to a while_op for every cluster-batch.
bool exit_flag = false;
// Record received sparse variables, so that
// we could reset those after execute optimize program
std::vector<framework::Variable *> sparse_vars;
while (!exit_flag) {
// Get from multiple trainers, we don't care about the order in which
// the gradients arrives, just add suffix 0~n and merge the gradient.
rpc_service_->SetCond(0);
size_t recv_var_cnt = 0;
int batch_barrier = 0;
while (batch_barrier != fan_in) {
const detail::ReceivedMessage v = rpc_service_->Get();
auto recv_var_name = v.first;
if (recv_var_name == LISTEN_TERMINATE_MESSAGE) {
LOG(INFO) << "received terminate message and exit";
exit_flag = true;
break;
}

// NOTE: if is_gpu_place, CUDA kernels are laugched by multiple threads
// and this will still work.

// The optimize blocks which have the same parent ID would run parallel
// TODO(Yancey1989): need to use ParallelExecutor for future
int32_t last_parent_blkid = program->Block(1).Parent();
std::vector<size_t> parallel_blkids;
parallel_blkids.push_back(1);
double ts = detail::GetTimestamp();
for (size_t blkid = 2; blkid < num_blocks; ++blkid) {
if (program->Block(blkid).Parent() != last_parent_blkid) {
for (size_t idx : parallel_blkids) VLOG(3) << idx;
ParallelExecuteBlocks(parallel_blkids, &executor, prepared, program,
&recv_scope);
parallel_blkids.clear();
last_parent_blkid = program->Block(blkid).Parent();
} else if (recv_var_name == BATCH_BARRIER_MESSAGE) {
VLOG(3) << "recv batch barrier message";
batch_barrier++;
continue;
} else {
VLOG(3) << "received grad: " << recv_var_name;
recv_var_cnt++;
auto var = v.second->GetVar();
if (var == nullptr) {
LOG(ERROR) << "Can not find server side var: " << recv_var_name;
PADDLE_THROW("Can not find server side var");
}
if (var->IsType<framework::SelectedRows>()) {
sparse_vars.push_back(var);
}
parallel_blkids.push_back(blkid);
}
ParallelExecuteBlocks(parallel_blkids, &executor, prepared, program,
&recv_scope);

VLOG(3) << "run all blocks spent " << detail::GetTimestamp() - ts
<< "(ms)";

// Reset the received sparse variables, the sum operator would not
// sum the input sparse variables which rows is empty at the next
// mini-batch.
// TODO(Yancey1989): move the reset action into an operator, we couldn't
// have any hide logic in the operator.
for (auto &var : sparse_vars) {
var->GetMutable<framework::SelectedRows>()->mutable_rows()->clear();
}
}
if (exit_flag) {
rpc_service_->SetCond(1);
// NOTE: does not consider barrier request retry in here, we may use
// global barrier id to resolve this.
rpc_service_->WaitClientGet(fan_in);
sparse_vars.clear();
} // while(true)
}
rpc_service_->ShutDown();
break;
}

protected:
std::shared_ptr<detail::AsyncGRPCServer> rpc_service_;
std::shared_ptr<std::thread> server_thread_;
};
// NOTE: if is_gpu_place, CUDA kernels are laugched by multiple threads
// and this will still work.

// The optimize blocks which have the same parent ID would run parallel
// TODO(Yancey1989): need to use ParallelExecutor for future
int32_t last_parent_blkid = program->Block(1).Parent();
std::vector<size_t> parallel_blkids;
parallel_blkids.push_back(1);
double ts = detail::GetTimestamp();
for (size_t blkid = 2; blkid < num_blocks; ++blkid) {
if (program->Block(blkid).Parent() != last_parent_blkid) {
ParallelExecuteBlocks(parallel_blkids, &executor, prepared, program,
&recv_scope);
parallel_blkids.clear();
last_parent_blkid = program->Block(blkid).Parent();
}
parallel_blkids.push_back(blkid);
}
ParallelExecuteBlocks(parallel_blkids, &executor, prepared, program,
&recv_scope);
VLOG(2) << "run all blocks spent " << detail::GetTimestamp() - ts << "(ms)";

// Reset the received sparse variables, the sum operator would not
// sum the input sparse variables which rows is empty at the next
// mini-batch.
// TODO(Yancey1989): move the reset action into an operator, we couldn't
// have any hide logic in the operator.
for (auto &var : sparse_vars) {
var->GetMutable<framework::SelectedRows>()->mutable_rows()->clear();
}
rpc_service_->SetCond(1);
// FIXME(typhoonzero): use another condition to sync wait clients get.
rpc_service_->WaitClientGet(fan_in);
sparse_vars.clear();
} // while(true)
}

class ListenAndServOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Expand Down
53 changes: 53 additions & 0 deletions paddle/fluid/operators/listen_and_serv_op.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <stdint.h>
#include <ostream>

#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/threadpool.h"
#include "paddle/fluid/operators/detail/grpc_server.h"

namespace paddle {
namespace operators {

constexpr char kOptimizeBlock[] = "OptimizeBlock";

void RunServer(std::shared_ptr<detail::AsyncGRPCServer> service);

class ListenAndServOp : public framework::OperatorBase {
public:
ListenAndServOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs);

int GetSelectedPort();

void Stop() override;

void RunImpl(const framework::Scope &scope,
const platform::Place &dev_place) const override;

protected:
mutable std::shared_ptr<detail::AsyncGRPCServer> rpc_service_;
mutable std::shared_ptr<std::thread> server_thread_;
};

} // namespace operators
} // namespace paddle
Loading