Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Accelerating image processing for CNN #668

Merged
merged 8 commits into from
Dec 8, 2016
5 changes: 5 additions & 0 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,7 @@ option(WITH_SWIG_PY "Compile PaddlePaddle with py PaddlePaddle prediction api" $
option(ON_TRAVIS "Running test on travis-ci or not." OFF)
option(ON_COVERALLS "Generating code coverage data on coveralls or not." OFF)
option(COVERALLS_UPLOAD "Uploading the generated coveralls json." ON)
option(USE_OPENCV "Compile PaddlePaddle with opencv" OFF)

if(NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE "RelWithDebInfo" CACHE STRING
Expand Down Expand Up @@ -195,3 +196,7 @@ if(WITH_DOC)
add_subdirectory(doc)
add_subdirectory(doc_cn)
endif()

if(USE_OPENCV)
add_subdirectory(plugin/opencv)
endif()
47 changes: 47 additions & 0 deletions plugin/opencv/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
# use opencv plugin

project(DeJpeg CXX C)
set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_SOURCE_DIR}/cmake")
set(PROJ_ROOT ${CMAKE_SOURCE_DIR})
list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake/Modules)
set(DEJPEG_LINKER_LIBS "")

# opencv
find_package(OpenCV REQUIRED COMPONENTS core highgui imgproc)
include_directories(${OpenCV_INCLUDE_DIRS})
list(APPEND DEJPEG_LINKER_LIBS ${OpenCV_LIBS})
message(STATUS "OpenCV found (${OpenCV_CONFIG_PATH})")
add_definitions(-DUSE_OPENCV)

# boost-python
set(Boost_NO_SYSTEM_PATHS ON)
if (Boost_NO_SYSTEM_PATHS)
set(BOOST_ROOT $ENV{BOOST_ROOT})
set(Boost_DIR ${BOOST_ROOT})
set(Boost_INCLUDE_DIR "${BOOST_ROOT}/include")
set(Boost_LIBRARIES "${BOOST_ROOT}/lib/")
endif (Boost_NO_SYSTEM_PATHS)
find_package(Boost 1.46 COMPONENTS python)
include_directories(SYSTEM ${Boost_INCLUDE_DIR})
link_directories(${Boost_INCLUDE_DIR})
message(STATUS "Boost found (${Boost_INCLUDE_DIR})")
message(STATUS "Boost found (${Boost_LIBRARIES})")
list(APPEND DEJPEG_LINKER_LIBS ${Boost_LIBRARIES})


file(GLOB DEJPEG_HEADER "${CMAKE_CURRENT_SOURCE_DIR}" "*.h")
file(GLOB DEJPEG_SOURCES "${CMAKE_CURRENT_SOURCE_DIR}" "*.cpp")

set(BUILD_PRIVATE_FLAGS
-Wno-all
-Wno-error
-Wno-non-virtual-dtor
-Wno-delete-non-virtual-dtor)

add_library(DeJpeg SHARED ${DEJPEG_SOURCES})
target_compile_options(DeJpeg BEFORE PRIVATE ${BUILD_PRIVATE_FLAGS})
target_link_libraries(DeJpeg ${DEJPEG_LINKER_LIBS})
set_target_properties(DeJpeg PROPERTIES PREFIX "")

add_style_check_target(DeJpeg ${DEJPEG_SOURCES})
add_style_check_target(DeJpeg ${DEJPEG_HEADER})
181 changes: 181 additions & 0 deletions plugin/opencv/DataTransformer.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,181 @@
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "DataTransformer.h"
#include <time.h>
#include <limits>

DataTransformer::DataTransformer(int threadNum,
int capacity,
bool isTest,
bool isColor,
int cropHeight,
int cropWidth,
int imgSize,
bool isEltMean,
bool isChannelMean,
float* meanValues)
: isTest_(isTest),
isColor_(isColor),
cropHeight_(cropHeight),
cropWidth_(cropWidth),
imgSize_(imgSize),
capacity_(capacity),
prefetchFree_(capacity),
prefetchFull_(capacity) {
fetchCount_ = -1;
scale_ = 1.0;
isChannelMean_ = isChannelMean;
isEltMean_ = isEltMean;
loadMean(meanValues);

imgPixels_ = cropHeight * cropWidth * (isColor_ ? 3 : 1);

prefetch_.reserve(capacity);
for (int i = 0; i < capacity; i++) {
auto d = std::make_shared<DataType>(new float[imgPixels_ * 3], 0);
prefetch_.push_back(d);
memset(prefetch_[i]->first, 0, imgPixels_ * sizeof(float));
prefetchFree_.enqueue(prefetch_[i]);
}

numThreads_ = threadNum;
syncThreadPool_.reset(new paddle::SyncThreadPool(numThreads_, false));
}

void DataTransformer::loadMean(float* values) {
if (values) {
int c = isColor_ ? 3 : 1;
int sz = isChannelMean_ ? c : cropHeight_ * cropWidth_ * c;
meanValues_ = new float[sz];
memcpy(meanValues_, values, sz * sizeof(float));
}
}

void DataTransformer::startFetching(const char* src,
const int size,
float* trg) {
std::vector<char> imbuf(src, src + size);
int cvFlag = (isColor_ ? CV_LOAD_IMAGE_COLOR : CV_LOAD_IMAGE_GRAYSCALE);
cv::Mat im = cv::imdecode(cv::Mat(imbuf), cvFlag);
if (!im.data) {
LOG(ERROR) << "Could not decode image";
LOG(ERROR) << im.channels() << " " << im.rows << " " << im.cols;
}
this->transform(im, trg);
}

int DataTransformer::Rand(int min, int max) {
std::random_device source;
std::mt19937 rng(source());
std::uniform_int_distribution<int> dist(min, max);
return dist(rng);
}

void DataTransformer::transform(cv::Mat& cvImgOri, float* target) {
const int imgChannels = cvImgOri.channels();
const int imgHeight = cvImgOri.rows;
const int imgWidth = cvImgOri.cols;
const bool doMirror = (!isTest_) && Rand(0, 1);
int h_off = 0;
int w_off = 0;
int th = imgHeight;
int tw = imgWidth;
cv::Mat img;
if (imgSize_ > 0) {
if (imgHeight > imgWidth) {
tw = imgSize_;
th = int(double(imgHeight) / imgWidth * tw);
th = th > imgSize_ ? th : imgSize_;
} else {
th = imgSize_;
tw = int(double(imgWidth) / imgHeight * th);
tw = tw > imgSize_ ? tw : imgSize_;
}
cv::resize(cvImgOri, img, cv::Size(tw, th));
} else {
cv::Mat img = cvImgOri;
}

cv::Mat cv_cropped_img = img;
if (cropHeight_ && cropWidth_) {
if (!isTest_) {
h_off = Rand(0, th - cropHeight_);
w_off = Rand(0, tw - cropWidth_);
} else {
h_off = (th - cropHeight_) / 2;
w_off = (tw - cropWidth_) / 2;
}
cv::Rect roi(w_off, h_off, cropWidth_, cropHeight_);
cv_cropped_img = img(roi);
} else {
CHECK_EQ(cropHeight_, imgHeight);
CHECK_EQ(cropWidth_, imgWidth);
}
int height = cropHeight_;
int width = cropWidth_;
int top_index;
for (int h = 0; h < height; ++h) {
const uchar* ptr = cv_cropped_img.ptr<uchar>(h);
int img_index = 0;
for (int w = 0; w < width; ++w) {
for (int c = 0; c < imgChannels; ++c) {
if (doMirror) {
top_index = (c * height + h) * width + width - 1 - w;
} else {
top_index = (c * height + h) * width + w;
}
float pixel = static_cast<float>(ptr[img_index++]);
if (isEltMean_) {
int mean_index = (c * imgHeight + h) * imgWidth + w;
target[top_index] = (pixel - meanValues_[mean_index]) * scale_;
} else {
if (isChannelMean_) {
target[top_index] = (pixel - meanValues_[c]) * scale_;
} else {
target[top_index] = pixel * scale_;
}
}
}
}
} // target: BGR
}

void DataTransformer::start(std::vector<char*>& data,
int* datalen,
int* labels) {
auto job = [&](int tid, int numThreads) {
for (size_t i = tid; i < data.size(); i += numThreads) {
DataTypePtr ret = prefetchFree_.dequeue();
char* buf = data[i];
int size = datalen[i];
ret->second = labels[i];
this->startFetching(buf, size, ret->first);
prefetchFull_.enqueue(ret);
}
};
syncThreadPool_->exec(job);
fetchCount_ = data.size();
}

void DataTransformer::obtain(float* data, int* label) {
fetchCount_--;
if (fetchCount_ < 0) {
LOG(FATAL) << "Empty data";
}
DataTypePtr ret = prefetchFull_.dequeue();
*label = ret->second;
memcpy(data, ret->first, sizeof(float) * imgPixels_);
prefetchFree_.enqueue(ret);
}
122 changes: 122 additions & 0 deletions plugin/opencv/DataTransformer.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifndef DATATRANSFORMER_H_
#define DATATRANSFORMER_H_

#include <iostream>
#include <fstream>
#include <opencv2/opencv.hpp>
#include <vector>
#include <string>
#include <algorithm>

#include "paddle/utils/Thread.h"

/**
* This is an image processing module with OpenCV, such as
* resizing, scaling, mirroring, substracting the image mean...
*
* This class has a double BlockQueue and they shared the same memory.
* It is used to avoid create memory each time. And it also can
* return the data even if the data are processing in multi-threads.
*/
class DataTransformer {
public:
DataTransformer(int threadNum,
int capacity,
bool isTest,
bool isColor,
int cropHeight,
int cropWidth,
int imgSize,
bool isEltMean,
bool isChannelMean,
float* meanValues);
virtual ~DataTransformer() {
if (meanValues_) {
free(meanValues_);
}
}

/**
* @brief Start multi-threads to transform a list of input data.
* The processed data will be saved in Queue of prefetchFull_.
*
* @param data Data containing the image string to be transformed.
* @param label The label of input image.
*/
void start(std::vector<char*>& data, int* datalen, int* labels);

/**
* @brief Applies the transformation on one image Mat.
*
* @param img The input img to be transformed.
* @param target target is used to save the transformed data.
*/
void transform(cv::Mat& img, float* target);

/**
* @brief Decode the image string, then calls transform() function.
*
* @param src The input image string.
* @param size The length of string.
* @param trg trg is used to save the transformed data.
*/
void startFetching(const char* src, const int size, float* trg);

/**
* @brief Return the transformed data and its label.
*/
void obtain(float* data, int* label);

private:
int isTest_;
int isColor_;
int cropHeight_;
int cropWidth_;
int imgSize_;
int capacity_;
int fetchCount_;
bool isEltMean_;
bool isChannelMean_;
int numThreads_;
float scale_;
int imgPixels_;
float* meanValues_;

/**
* Initialize the mean values.
*/
void loadMean(float* values);

/**
* @brief Generates a random integer from Uniform({min, min + 1, ..., max}).
* @param min The lower bound (inclusive) value of the random number.
* @param max The upper bound (inclusive) value of the random number.
*
* @return
* A uniformly random integer value from ({min, min + 1, ..., max}).
*/
int Rand(int min, int max);

typedef std::pair<float*, int> DataType;
typedef std::shared_ptr<DataType> DataTypePtr;
std::vector<DataTypePtr> prefetch_;
std::unique_ptr<paddle::SyncThreadPool> syncThreadPool_;
paddle::BlockingQueue<DataTypePtr> prefetchFree_;
paddle::BlockingQueue<DataTypePtr> prefetchFull_;
}; // class DataTransformer

#endif // DATATRANSFORMER_H_
Loading