Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[AutoParallel] 3D parallel on MLP with PIR #64369

Merged
merged 4 commits into from
May 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 19 additions & 4 deletions python/paddle/distributed/auto_parallel/api.py
Original file line number Diff line number Diff line change
Expand Up @@ -2210,16 +2210,31 @@ def __call__(self, *args):
self.outs = outs

if self._mode == "predict":
if "outputs" in outs:
return outs["outputs"]
if "outputs" in self.outs:
return self.outs["outputs"]
else:
return None
else:
if "loss" in outs:
return outs["loss"]
if "loss" in self.outs:
return self.outs["loss"]
else:
return None

def _fetch_value(self, value, name=None):
"""
Get the value of the variable with the given name.

Args:
value (pir.Value): The pir Value to fetch.
name (str|None, optional): The user-defined name of
the fetched result. If None, the order of the Value
in the fetch list will be used. Default: None.
"""
self._engine._pir_fetch_values.append(value)
if name is None:
name = len(self._engine._pir_fetch_values) - 1
self._engine._pir_user_defined_fetch_names.append(name)

def state_dict(self, mode="all"):
"""
Get the state dict of model and optimizer.
Expand Down
7 changes: 7 additions & 0 deletions python/paddle/distributed/auto_parallel/static/engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -212,6 +212,8 @@ def __init__(
self._fwd_main_progs = {}
self._pir_dist_main_progs = {}
self._pir_dense_main_progs = {}
self._pir_fetch_values = []
self._pir_user_defined_fetch_names = []
self._orig_optimizer = copy.deepcopy(self._optimizer)

self._executor = None
Expand Down Expand Up @@ -1809,6 +1811,7 @@ def run(self, data=None, feed=None, fetch_list=None, mode=None):
fetch_names = []
else:
fetch_names = [loss_value]
fetch_names += self._pir_fetch_values

outs = self._executor.run(
self.main_program,
Expand All @@ -1821,8 +1824,12 @@ def run(self, data=None, feed=None, fetch_list=None, mode=None):
if self._in_pir_mode:
if no_fetch:
logs = {"outputs": None, "loss": None}
start_idx = 0
else:
logs = {"outputs": outs[0], "loss": outs[0]}
start_idx = 1
for i, name in enumerate(self._pir_user_defined_fetch_names):
logs[name] = outs[start_idx + i]
return logs

logs = self._prepare_logger(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -123,7 +123,7 @@ def reshard(self, src_dist_attr, dst_dist_attr, src_value, dst_type):
for partial_dim, partial_type in in_partial_status.items():
if (
partial_dim in out_partial_status
or ori_dst_dist_attr.dims_mapping[partial_dim] > -1
or partial_dim in ori_dst_dist_attr.dims_mapping
):
continue

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,7 @@ def reshard(self, src_dist_attr, dst_dist_attr, src_value, dst_type):
-1 not in dst_type.shape
), "dynamic shape is not supported by pir-auto parallel yet."
recv_value = paddle._C_ops.recv_v2(
dst_type.shape,
dst_type._local_shape,
dst_type.dtype,
src_local_rank,
comm_group.id,
Expand Down
71 changes: 68 additions & 3 deletions test/auto_parallel/hybrid_strategy/pir_reshard_nd_mesh.py
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,6 @@ def run_pp_to_rr_case(self):
)

new_ops = dist_program.global_block().ops
old_ops_name = [op.name() for op in main_program.global_block().ops]
new_ops_name = [op.name() for op in dist_program.global_block().ops]

rank_id = dist.get_rank()
Expand Down Expand Up @@ -150,7 +149,6 @@ def run_pr_to_rs_case(self):
)

new_ops = dist_program.global_block().ops
old_ops_name = [op.name() for op in main_program.global_block().ops]
new_ops_name = [op.name() for op in dist_program.global_block().ops]

rank_id = dist.get_rank()
Expand Down Expand Up @@ -204,7 +202,6 @@ def run_ss_to_ss_case(self):
)

new_ops = dist_program.global_block().ops
old_ops_name = [op.name() for op in main_program.global_block().ops]
new_ops_name = [op.name() for op in dist_program.global_block().ops]

all_gather_ops = []
Expand Down Expand Up @@ -274,11 +271,79 @@ def run_ss_to_ss_case(self):
tgt_out_value = (self._mesh.process_ids, [1, 0, -1], {})
self.validate(op, tgt_operand, tgt_result, tgt_in_value, tgt_out_value)

def run_ps_to_ps_case(self):
# [Partial(), Shard(0)] --> [Replicate(), Shard(1)]
# c_allreduce_sum + all_gather + slice
main_program, dist_program = self.create_program(
[self.BATCH_SIZE, self.SEQ_LEN, self.HIDDEN_SIZE],
[dist.Partial(dist.ReduceType.kRedSum), dist.Shard(0)],
[dist.Replicate(), dist.Shard(1)],
)

ops = dist_program.global_block().ops
op_names = [op.name() for op in ops]
assert "pd_op.c_allreduce_sum_" in op_names
assert "pd_op.c_allgather" in op_names
assert "pd_op.slice" in op_names

allreduce_sum_op = ops[op_names.index("pd_op.c_allreduce_sum_")]
allgather_op = ops[op_names.index("pd_op.c_allgather")]
slice_op = ops[op_names.index("pd_op.slice")]

# check the allreduce_sum
rank_id = dist.get_rank()
if rank_id in [0, 2]:
process_ids = [0, 2]
elif rank_id in [1, 3]:
process_ids = [1, 3]
tgt_operand = (process_ids, [-1, -1, -1], {0: dist.ReduceType.kRedSum})
tgt_result = (process_ids, [-1, -1, -1], {})
tgt_in_value = (
self._mesh.process_ids,
[1, -1, -1],
{0: dist.ReduceType.kRedSum},
)
tgt_out_value = (self._mesh.process_ids, [1, -1, -1], {})
self.validate(
allreduce_sum_op,
tgt_operand,
tgt_result,
tgt_in_value,
tgt_out_value,
)

# check the allgather
if rank_id in [0, 1]:
process_ids = [0, 1]
elif rank_id in [2, 3]:
process_ids = [2, 3]
tgt_operand = (process_ids, [0, -1, -1], {})
tgt_result = (process_ids, [-1, -1, -1], {})
tgt_in_value = (self._mesh.process_ids, [1, -1, -1], {})
tgt_out_value = (self._mesh.process_ids, [-1, -1, -1], {})
self.validate(
allgather_op, tgt_operand, tgt_result, tgt_in_value, tgt_out_value
)

# check the slice
if rank_id in [0, 1]:
process_ids = [0, 1]
elif rank_id in [2, 3]:
process_ids = [2, 3]
tgt_operand = (process_ids, [-1, -1, -1], {})
tgt_result = (process_ids, [-1, 0, -1], {})
tgt_in_value = (self._mesh.process_ids, [-1, -1, -1], {})
tgt_out_value = (self._mesh.process_ids, [-1, 1, -1], {})
self.validate(
slice_op, tgt_operand, tgt_result, tgt_in_value, tgt_out_value
)

def run_test_cases(self):
self.run_pp_to_rr_case()
self.run_pr_to_rs_case()
self.run_pr_to_ss_case()
self.run_ss_to_ss_case()
self.run_ps_to_ps_case()


if __name__ == '__main__':
Expand Down
Loading