-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add sequence_conv_op and sequence_projection functor #4814
Changes from 15 commits
1e60c9b
40688d2
834b82f
4d112b7
6246be2
4c19f9f
ce96057
0ab2c43
f2ccef2
154dbb4
4c6bccb
b15c69f
6f02fe7
05239b6
dcb3da5
99c6f44
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/operators/math/sequence_project.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
namespace math { | ||
|
||
template class SequenceProjectFunctor<platform::CPUPlace, float>; | ||
template class SequenceProjectFunctor<platform::CPUPlace, double>; | ||
|
||
} // namespace math | ||
} // namespace operators | ||
} // namespace paddle |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#define EIGEN_USE_GPU | ||
|
||
#include "paddle/operators/math/sequence_project.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
namespace math { | ||
|
||
template class SequenceProjectFunctor<platform::GPUPlace, float>; | ||
template class SequenceProjectFunctor<platform::GPUPlace, double>; | ||
|
||
} // namespace math | ||
} // namespace operators | ||
} // namespace paddle |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,236 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
|
||
#include "paddle/framework/eigen.h" | ||
#include "paddle/framework/lod_tensor.h" | ||
#include "paddle/framework/tensor.h" | ||
#include "paddle/operators/math/im2col.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
namespace math { | ||
|
||
// template <typename T, int MajorType = Eigen::RowMajor, | ||
// typename IndexType = Eigen::DenseIndex> | ||
// using EigenVector = framework::EigenVector<T, MajorType, IndexType>; | ||
|
||
template <typename T, int MajorType = Eigen::RowMajor, | ||
typename IndexType = Eigen::DenseIndex> | ||
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>; | ||
/* | ||
* \brief SequenceProject projects features of context_length time-steps of each | ||
* instance. | ||
* | ||
* \param in Input data. | ||
* \param inShape The shape of Input data, | ||
* [minibatch, number_of_input_features]. | ||
* \param inShape A float LoDTensor. | ||
* | ||
* \param padding_data Padding data. | ||
* \param inShape The shape of Padding data, | ||
* [up_pad + down_pad, number_of_input_features]. | ||
* \param inShape A float LoDTensor. | ||
* | ||
* \param col Col data. | ||
* \param inShape The shape of Col data, | ||
* [minibatch, 1]. | ||
* \param inShape A float LoDTensor. | ||
* | ||
* For a mini-batch of 2 variable lengths sentences, containing 3, and 1 | ||
* time-steps: | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Line 34 says this function is used for one sequence, but the example here has variable lengths sentences. Please to keep consistent. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Done |
||
* | ||
* Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3, | ||
* 4]. | ||
* Besides, for the sake of simplicity, we assume M=1 and N=2. | ||
* | ||
* X = [[a1, a2; | ||
* b1, b2; | ||
* c1, c2] | ||
* [d1, d2]] | ||
* | ||
* This is to say that input (X) has 4 words and the dimension of each word | ||
* representation is 2. | ||
* | ||
* - Case1: | ||
* If context_start is -1 and padding_trainable is false, we use zero to pad | ||
* instead of learned weight to pad, | ||
* and the context_lenth is 3, the output (Out) is: | ||
* | ||
* Out =[[0, 0, a1, a2, b1, b2; | ||
* a1, a2, b1, b2, c1, c2; | ||
* b1, b2, c1, c2, 0, 0 ] | ||
* [0, 0, d1, d2, 0, 0 ]] | ||
* | ||
* - Case2: | ||
* If context_start is -1 and padding_trainable is true, we use learned weight | ||
* to pad, | ||
* and the context_lenth is 3, the output (Out) is: | ||
* | ||
* Out = [[w1, w2, a1, a2, b1, b2; | ||
* a1, a2, b1, b2, c1, c2; | ||
* b1, b2, c1, c2, w3, w4] | ||
* [w1, w2, d1, d2, w3, w4]] | ||
* | ||
*/ | ||
|
||
template <typename Place, typename T> | ||
class SequenceProjectFunctor { | ||
public: | ||
void operator()(const platform::DeviceContext& context, | ||
framework::LoDTensor& in, framework::Tensor& padding_data, | ||
framework::Tensor& col, bool padding_trainable, | ||
int context_start, int context_length, int context_stride, | ||
int up_pad, int down_pad, bool gradient, bool input_grad, | ||
bool pad_grad) { | ||
auto lod_level_0 = in.lod()[0]; | ||
|
||
paddle::operators::math::Im2ColFunctor< | ||
paddle::operators::math::ColFormat::kOCF, Place, float> | ||
im2col_ocf; | ||
paddle::operators::math::Col2ImFunctor< | ||
paddle::operators::math::ColFormat::kOCF, Place, float> | ||
col2im_ocf; | ||
|
||
int input_row_begin, input_row_end; | ||
int sequence_height, sequence_width; | ||
sequence_width = in.dims()[1]; | ||
input_grad = gradient && input_grad; | ||
pad_grad = gradient && pad_grad; | ||
|
||
if (!gradient || input_grad) { | ||
for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) { | ||
input_row_begin = (context_start > 0) | ||
? static_cast<int>(lod_level_0[i]) + context_start | ||
: static_cast<int>(lod_level_0[i]); | ||
input_row_end = static_cast<int>(lod_level_0[i + 1]); | ||
|
||
framework::Tensor out_t = | ||
col.Slice(static_cast<int>(lod_level_0[i]), | ||
static_cast<int>(lod_level_0[i + 1])); | ||
|
||
sequence_height = static_cast<int>(out_t.dims()[0]); | ||
|
||
if (input_row_begin < input_row_end) { | ||
framework::Tensor in_t = in.Slice(input_row_begin, input_row_end); | ||
|
||
std::vector<int64_t> output_shape( | ||
{sequence_height, 1, 1, context_length, | ||
sequence_width}); // output_height, output_width, | ||
// input_channels, filter_height, filter_width | ||
|
||
out_t.Resize(framework::make_ddim(output_shape)); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Can remove the There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Done |
||
|
||
std::vector<int64_t> input_shape( | ||
{1, input_row_end - input_row_begin, | ||
sequence_width}); // input_channels, input_height, input_width | ||
in_t.Resize(framework::make_ddim(input_shape)); | ||
|
||
if (gradient) { | ||
col2im_ocf(context, in_t, out_t, | ||
/*stride_height*/ context_stride, /*stride_width*/ 1, | ||
up_pad, down_pad, 0, 0); | ||
} else { | ||
im2col_ocf(context, in_t, out_t, | ||
/*stride_height*/ context_stride, /*stride_width*/ 1, | ||
up_pad, down_pad, 0, 0); | ||
} | ||
out_t.Resize(framework::make_ddim( | ||
{sequence_height, context_length * sequence_width})); | ||
} | ||
} | ||
} | ||
if (!gradient || pad_grad) { | ||
if (padding_trainable) { | ||
for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) { | ||
framework::Tensor out_t = | ||
col.Slice(static_cast<int>(lod_level_0[i]), | ||
static_cast<int>(lod_level_0[i + 1])); | ||
|
||
sequence_height = static_cast<int>(out_t.dims()[0]); | ||
|
||
// add up trainable data | ||
out_t.Resize(framework::make_ddim( | ||
{sequence_height * context_length, sequence_width})); | ||
|
||
if (up_pad > 0) { // add up pad | ||
int padding_rows = std::min( | ||
up_pad, static_cast<int>(lod_level_0[i + 1] - lod_level_0[i])); | ||
|
||
for (int k = 0; k < padding_rows; ++k) { | ||
int padding_size = | ||
k + context_length < up_pad ? context_length : up_pad - k; | ||
framework::Tensor out_t_sub = out_t.Slice( | ||
k * context_length, k * context_length + padding_size); | ||
framework::Tensor w_sub = padding_data.Slice(k, k + padding_size); | ||
// in this block, using EigenVector<T>::Flatten is ok too. | ||
auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub); | ||
auto w_sub_e = EigenMatrix<T>::From(w_sub); | ||
if (gradient) { | ||
w_sub_e.device(*context.GetEigenDevice<Place>()) = | ||
w_sub_e + out_t_sub_e; | ||
} else { | ||
out_t_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e; | ||
} | ||
} | ||
} | ||
if (down_pad > 0) { // add down pad | ||
int down_pad_begin_row = | ||
std::max( | ||
0, (sequence_height - context_start - context_length) + 1) + | ||
1; | ||
int padding_begin = std::max(0, context_start - sequence_height); | ||
int padding_size = | ||
sequence_height - context_start >= context_length | ||
? 1 | ||
: context_length - (sequence_height - context_start); | ||
if (context_start >= sequence_height) padding_size = context_length; | ||
int padding_idx = padding_begin; | ||
for (int t = 0; t + down_pad_begin_row <= sequence_height; | ||
++t, ++padding_size) { | ||
if (context_start >= sequence_height) | ||
padding_size = context_length; | ||
if (padding_size > context_length) { | ||
padding_size = context_length; | ||
padding_idx++; | ||
} | ||
if (padding_begin > 0 || sequence_height == context_start) | ||
padding_idx = padding_begin + t; | ||
framework::Tensor out_t_sub = out_t.Slice( | ||
(down_pad_begin_row + t) * context_length - padding_size, | ||
(down_pad_begin_row + t) * context_length); | ||
framework::Tensor w_sub = padding_data.Slice( | ||
up_pad + padding_idx, up_pad + padding_idx + padding_size); | ||
auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub); | ||
auto w_sub_e = EigenMatrix<T>::From(w_sub); | ||
if (gradient) { | ||
w_sub_e.device(*context.GetEigenDevice<Place>()) = | ||
w_sub_e + out_t_sub_e; | ||
} else { | ||
out_t_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e; | ||
} | ||
} | ||
} | ||
out_t.Resize(framework::make_ddim( | ||
{sequence_height, context_length * sequence_width})); | ||
} | ||
} | ||
} | ||
} | ||
}; | ||
|
||
} // namespace math | ||
} // namespace operators | ||
} // namespace paddle |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Why are so many inShape?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
fixed.