-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
logger manager #45909
logger manager #45909
Changes from 8 commits
0bcd885
f47549e
9f950fb
7d62cb3
3d8efd6
059fe59
ee5ebcc
9bd1d60
d2c3f39
8bf0175
92de171
e99726f
667c094
63e2102
d12a4ab
4057027
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -13,7 +13,6 @@ | |
# limitations under the License. | ||
|
||
import copy | ||
import warnings | ||
import paddle | ||
import os | ||
from types import MethodType | ||
|
@@ -32,6 +31,8 @@ | |
from .meta_parallel import model_parallel_random_seed | ||
from paddle import _C_ops, _legacy_C_ops | ||
from paddle.fluid import core | ||
from .utils.log_util import logger, set_log_level | ||
import logging | ||
|
||
__all__ = [] | ||
|
||
|
@@ -54,7 +55,7 @@ def apply_ir_passes(main_program, startup_program, config): | |
# RawProgramOptimizer also inserts coalesce_tensor | ||
# into program. These two procedures may conflict | ||
# in which vars are to be fused. | ||
warnings.warn( | ||
logger.warning( | ||
'Currently, the fuse_all_optimizer_ops pass has conflict with fuse_all_reduce_ops pass. Disable the fuse_all_optimizer_ops pass temporarily.' | ||
) | ||
build_strategy.fuse_all_optimizer_ops = False | ||
|
@@ -83,7 +84,7 @@ def __impl__(*args, **kwargs): | |
|
||
if cls._role_maker is not None and cls._role_maker._is_non_distributed( | ||
) is True: | ||
warnings.warn( | ||
logger.warning( | ||
"%s() function doesn't work when use non_distributed fleet." % | ||
(func.__name__)) | ||
return | ||
|
@@ -165,7 +166,11 @@ def __init__(self): | |
self._context = {} | ||
self.user_defined_optimizer = paddle.optimizer.Optimizer(0.0) | ||
|
||
def init(self, role_maker=None, is_collective=False, strategy=None): | ||
def init(self, | ||
role_maker=None, | ||
is_collective=False, | ||
strategy=None, | ||
log_level="INFO"): | ||
""" | ||
Initialize role_maker in Fleet. | ||
|
||
|
@@ -183,6 +188,8 @@ def init(self, role_maker=None, is_collective=False, strategy=None): | |
is False. | ||
strategy (DistributedStrategy): Extra properties for distributed training. | ||
For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None. | ||
log_level (Integer, String, optional): A ``Integer`` or ``String`` Variable determining how hight | ||
the logging level is. Default is "INFO". | ||
|
||
|
||
Returns: | ||
|
@@ -218,7 +225,18 @@ def init(self, role_maker=None, is_collective=False, strategy=None): | |
strategy = fleet.DistributedStrategy() | ||
fleet.init(strategy=strategy) | ||
|
||
Examples5: | ||
|
||
.. code-block:: python | ||
|
||
import paddle.distributed.fleet as fleet | ||
strategy = fleet.DistributedStrategy() | ||
fleet.init(log_level = "DEBUG") | ||
|
||
""" | ||
|
||
set_log_level(log_level) | ||
|
||
if strategy is None: | ||
strategy = DistributedStrategy() | ||
self._user_defined_strategy = copy.deepcopy(strategy) | ||
|
@@ -262,12 +280,12 @@ def init(self, role_maker=None, is_collective=False, strategy=None): | |
self._hcg = tp.HybridCommunicateGroup(self._topology) | ||
return | ||
if parallel_helper._is_parallel_ctx_initialized(): | ||
warnings.warn( | ||
logger.warning( | ||
"The dygraph parallel environment has been initialized.") | ||
else: | ||
# FLAGS_nccl_nrings is used for dynamic graph multi-stream communication | ||
if "FLAGS_nccl_nrings" in os.environ: | ||
warnings.warn( | ||
logger.warning( | ||
"You have set the environment variable FLAGS_nccl_nrings " | ||
"outside the program, so the nccl_comm_num in " | ||
"DistributedStrategy will not take effect here.") | ||
|
@@ -282,7 +300,7 @@ def init(self, role_maker=None, is_collective=False, strategy=None): | |
if tp._HYBRID_PARALLEL_GROUP is None: | ||
self._init_hybrid_parallel_env() | ||
else: | ||
warnings.warn( | ||
logger.warning( | ||
"The dygraph hybrid parallel environment has been initialized." | ||
) | ||
elif self._is_collective: | ||
|
@@ -851,9 +869,6 @@ def save_inference_model(self, | |
fleet.init_server() | ||
|
||
""" | ||
# warnings.warn( | ||
# "'save_inference_model' is a deprecated, will be deleted after v2.2.0, Please use fleet.save instead." | ||
# ) | ||
|
||
self._runtime_handle._save_inference_model(executor, dirname, | ||
feeded_var_names, | ||
|
@@ -903,10 +918,6 @@ def save_persistables(self, executor, dirname, main_program=None, mode=0): | |
fleet.save_persistables(exe, "dirname", paddle.static.default_main_program()) | ||
|
||
""" | ||
# warnings.warn( | ||
# "'save_persistables' is a deprecated, will be deleted after v2.2.0, Please use fleet.save instead." | ||
# ) | ||
|
||
self._runtime_handle._save_persistables(executor, dirname, main_program, | ||
mode) | ||
|
||
|
@@ -1016,7 +1027,7 @@ def distributed_optimizer(self, optimizer, strategy=None): | |
|
||
if strategy is not None: | ||
if self._is_collective: | ||
warnings.warn( | ||
logger.warning( | ||
"It is recommended to use DistributedStrategy " | ||
"in fleet.init(). The strategy here is only for compatibility. " | ||
"If the strategy in fleet.distributed_optimizer() is " | ||
|
@@ -1305,8 +1316,9 @@ def _minimize_impl(self, | |
copy_user_defined_strategy, can_not_apply_optimizer_list) | ||
|
||
context["valid_strategy"] = copy.deepcopy(valid_strategy) | ||
# print("valid_strategy:", context["valid_strategy"]) | ||
# print("user_defined_strategy:", context["user_defined_strategy"]) | ||
logger.debug("valid_strategy: " + str(context["valid_strategy"])) | ||
logger.debug("user_defined_strategy: " + | ||
str(context["user_defined_strategy"])) | ||
|
||
applied_meta_list = self.strategy_compiler._get_applied_meta_list() | ||
applied_graph_list = self.strategy_compiler._get_applied_graph_list() | ||
|
@@ -1336,17 +1348,19 @@ def _minimize_impl(self, | |
no_grad_set=no_grad_set) | ||
|
||
if meta_optimizer: | ||
# print("before minimize program id:", id(loss.block.program)) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. logger.debug()? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. done |
||
logger.debug("before minimize program id: " + | ||
str(id(loss.block.program))) | ||
optimize_ops, params_grads = meta_optimizer.minimize( | ||
loss, startup_program, parameter_list, no_grad_set=no_grad_set) | ||
# print("after minimize program id:", id(loss.block.program)) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Same as before There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. done |
||
|
||
logger.debug("after minimize program id: " + | ||
str(id(loss.block.program))) | ||
default_program = paddle.static.default_main_program() | ||
# print("default program id:", id(default_program)) | ||
logger.debug("default program id: " + str(id(default_program))) | ||
|
||
if id(default_program) != id(loss.block.program): | ||
paddle.fluid.framework.switch_main_program(loss.block.program) | ||
# print("default program id after switch:", id(default_program)) | ||
logger.debug("default program id after switch: " + | ||
str(id(default_program))) | ||
|
||
else: | ||
optimize_ops, params_grads = self.user_defined_optimizer.minimize( | ||
|
@@ -1356,7 +1370,8 @@ def _minimize_impl(self, | |
context["program_params_grads"] = params_grads | ||
|
||
if graph_optimizer: | ||
# print("before graph minimize program id:", id(loss.block.program)) | ||
logger.debug("before graph minimize program id: " + | ||
str(id(loss.block.program))) | ||
optimize_ops, params_grads = graph_optimizer.minimize( | ||
loss, startup_program, parameter_list, no_grad_set=no_grad_set) | ||
# since we do not encourage users to use graph operations | ||
|
@@ -1455,7 +1470,8 @@ def _minimize_losses_impl(self, | |
if v or k not in opt_info: | ||
opt_info[k] = v | ||
program._fleet_opt = opt_info | ||
# print("fleet base opt info:", id(program), program._fleet_opt) | ||
logger.debug("fleet base opt info: " + str(id(program)) + | ||
str(program._fleet_opt)) | ||
|
||
if self._runtime_handle is None: | ||
self._runtime_handle = RuntimeFactory()._create_runtime(context) | ||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -14,7 +14,6 @@ | |
import os | ||
import six | ||
import numpy as np | ||
import warnings | ||
|
||
from paddle import framework | ||
import paddle | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
get_log_level
one is enough!There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
keeping