Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Delete ElementwiseKernel in BroadcastKernel #42779

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 6 additions & 16 deletions paddle/phi/kernels/funcs/broadcast_function.h
Original file line number Diff line number Diff line change
Expand Up @@ -669,26 +669,16 @@ void BroadcastKernel(const KPDevice &ctx,
Functor func) {
std::vector<int> dims_size;
dims_size.reserve(ins.size());
bool no_broadcast_flag = true;
for (auto *in : ins) {
no_broadcast_flag &= ins[0]->dims() == in->dims();
dims_size.emplace_back(in->dims().size());
}

if (ins.size() > 0 && outs->size() > 0) {
no_broadcast_flag &= outs->at(0)->dims() == ins[0]->dims();
}

if (no_broadcast_flag) {
phi::funcs::ElementwiseKernel<OutT, Functor, NumOuts>(ctx, ins, outs, func);
} else {
axis = axis == -1
? *std::max_element(dims_size.begin(), dims_size.end()) -
*std::min_element(dims_size.begin(), dims_size.end())
: axis;
BroadcastKernelForDifferentVecSize<ET, InT, OutT, Functor, NumOuts>(
ctx, ins, outs, axis, func);
}
axis = axis == -1
? *std::max_element(dims_size.begin(), dims_size.end()) -
*std::min_element(dims_size.begin(), dims_size.end())
: axis;
BroadcastKernelForDifferentVecSize<ET, InT, OutT, Functor, NumOuts>(
ctx, ins, outs, axis, func);
}

template <typename Functor, typename T, typename OutType = T>
Expand Down
10 changes: 6 additions & 4 deletions paddle/phi/kernels/gpu/gelu_grad_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -81,11 +81,13 @@ void GeluGradKernel(const Context& dev_ctx,
}
}
#endif
phi::funcs::BroadcastKernel<ElementwiseType::kBinary, T, T>(
dev_ctx, ins, &outs, 0, GeluWithApproximateGradFunctor<T>());
using Functor = GeluWithApproximateGradFunctor<T>;
phi::funcs::ElementwiseKernel<T, Functor, 1>(
dev_ctx, ins, &outs, Functor());
} else {
phi::funcs::BroadcastKernel<ElementwiseType::kBinary, T, T>(
dev_ctx, ins, &outs, 0, GeluWithoutApproximateGradFunctor<T>());
using Functor = GeluWithoutApproximateGradFunctor<T>;
phi::funcs::ElementwiseKernel<T, Functor, 1>(
dev_ctx, ins, &outs, Functor());
}
}

Expand Down
10 changes: 6 additions & 4 deletions paddle/phi/kernels/gpu/gelu_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -71,11 +71,13 @@ void GeluKernel(const Context& dev_ctx,
}
}
#endif
phi::funcs::BroadcastKernel<ElementwiseType::kBinary, T, T>(
dev_ctx, ins, &outs, 0, GeluWithApproximateFunctor<T>());
using Functor = GeluWithApproximateFunctor<T>;
phi::funcs::ElementwiseKernel<T, Functor, 1>(
dev_ctx, ins, &outs, Functor());
} else {
phi::funcs::BroadcastKernel<ElementwiseType::kBinary, T, T>(
dev_ctx, ins, &outs, 0, GeluWithoutApproximateFunctor<T>());
using Functor = GeluWithoutApproximateFunctor<T>;
phi::funcs::ElementwiseKernel<T, Functor, 1>(
dev_ctx, ins, &outs, Functor());
}
}

Expand Down
21 changes: 7 additions & 14 deletions paddle/phi/kernels/gpu/reduce_grad.h
Original file line number Diff line number Diff line change
Expand Up @@ -43,22 +43,19 @@ void ReduceGrad(const GPUContext& dev_ctx,
}));
}

template <typename T,
typename Context,
template <typename, typename> class TransformOp>
template <typename T, typename OutT, typename Context, typename Functor>
void ReduceGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out_grad,
const std::vector<int64_t>& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad) {
DenseTensor* x_grad,
Functor functor) {
auto* in_x = &x;
auto* d_out = &out_grad;
auto* d_x = x_grad;

auto pt_out_dtype = x.dtype();

// get reduce_dim and reduce_num for reduce_mean_grad
int dim_size = in_x->dims().size();
std::vector<int> reduce_dims =
Expand All @@ -79,14 +76,10 @@ void ReduceGradKernel(const Context& dev_ctx,

auto pt_d_out = new_d_out;
auto pt_d_x = *d_x;
using MPType = typename kps::details::MPTypeTrait<T>::Type;

phi::ReduceGrad<T, TransformOp<T, MPType>>(
dev_ctx,
&pt_d_out,
&pt_d_x,
pt_out_dtype,
TransformOp<T, MPType>(reduce_num));
std::vector<const DenseTensor*> inputs = {&pt_d_out};
std::vector<DenseTensor*> outputs = {&pt_d_x};
funcs::BroadcastKernel<phi::ElementwiseType::kUnary, T, OutT>(
dev_ctx, inputs, &outputs, 0, functor);
}

} // namespace phi
Expand Down
19 changes: 17 additions & 2 deletions paddle/phi/kernels/gpu/reduce_mean_grad_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -29,8 +29,23 @@ void ReduceMeanGradKernel(const Context& dev_ctx,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad) {
ReduceGradKernel<T, Context, kps::DivideFunctor>(
dev_ctx, x, out_grad, dims, keep_dim, reduce_all, x_grad);
int dim_size = x.dims().size();
std::vector<int> reduce_dims =
funcs::details::GetReduceDim(dims, dim_size, reduce_all);
int reduce_num = 1;
for (auto i : reduce_dims) {
reduce_num *= (x.dims())[i];
}
using MPType = typename kps::details::MPTypeTrait<T>::Type;
ReduceGradKernel<T, T, Context, kps::DivideFunctor<T, MPType>>(
dev_ctx,
x,
out_grad,
dims,
keep_dim,
reduce_all,
x_grad,
kps::DivideFunctor<T, MPType>(reduce_num));
}

} // namespace phi
Expand Down
37 changes: 34 additions & 3 deletions paddle/phi/kernels/gpu/reduce_sum_grad_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -29,8 +29,40 @@ void ReduceSumGradKernel(const Context& dev_ctx,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad) {
ReduceGradKernel<T, Context, kps::IdentityFunctor>(
dev_ctx, x, out_grad, dims, keep_dim, reduce_all, x_grad);
using MPType = typename kps::details::MPTypeTrait<T>::Type;
auto out_dtype = x.dtype();
auto* in_x = &x;
auto* d_out = &out_grad;
auto* d_x = x_grad;

// get reduce_dim and reduce_num for reduce_mean_grad
int dim_size = in_x->dims().size();
std::vector<int> reduce_dims =
funcs::details::GetReduceDim(dims, dim_size, reduce_all);

auto update_dims = vectorize(d_x->dims());
int reduce_num = 1;
for (auto i : reduce_dims) {
reduce_num *= (in_x->dims())[i];
update_dims[i] = 1;
}
// make new tensor
DenseTensor new_d_out(d_out->dtype());
new_d_out.ShareDataWith(*d_out);
new_d_out.Resize(phi::make_ddim(update_dims));

dev_ctx.Alloc(d_x, x.dtype());
auto pt_out_dtype = x.dtype();
auto pt_d_out = new_d_out;
auto pt_d_x = *d_x;
std::vector<const DenseTensor*> inputs = {&pt_d_out};
std::vector<DenseTensor*> outputs = {&pt_d_x};
phi::ReduceGrad<T, kps::IdentityFunctor<T, MPType>>(
dev_ctx,
&pt_d_out,
&pt_d_x,
pt_out_dtype,
kps::IdentityFunctor<T, MPType>());
}

} // namespace phi
Expand All @@ -48,4 +80,3 @@ PD_REGISTER_KERNEL(sum_grad,
int64_t,
phi::dtype::complex<float>,
phi::dtype::complex<double>) {}

3 changes: 1 addition & 2 deletions paddle/phi/kernels/gpu/where_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -40,8 +40,7 @@ void WhereKernel(const Context& ctx,
ctx.template Alloc<T>(out);

CondFunctor<T> func;
funcs::BroadcastKernel<ElementwiseType::kTernary, T, T>(
ctx, ins, &outs, -1, func);
funcs::ElementwiseKernel<T, CondFunctor<T>, 1>(ctx, ins, &outs, func);
}

} // namespace phi
Expand Down
6 changes: 3 additions & 3 deletions paddle/phi/kernels/kps/bitwise_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -51,9 +51,9 @@ void BitwiseNotKernel(const Context& dev_ctx,
dev_ctx.template Alloc<T>(out);
std::vector<const DenseTensor*> ins = {&x};
std::vector<DenseTensor*> outs = {out};
funcs::BitwiseNotFunctor<T> func;
funcs::BroadcastKernel<ElementwiseType::kUnary, T, T>(
dev_ctx, ins, &outs, -1, func);
funcs::BitwiseNotFunctor<T> unary_func;
funcs::ElementwiseKernel<T, funcs::BitwiseNotFunctor<T>>(
dev_ctx, ins, &outs, unary_func);
}

} // namespace phi
Expand Down