-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add sparse conv3d kernel #39879
Merged
Merged
Add sparse conv3d kernel #39879
Changes from all commits
Commits
Show all changes
24 commits
Select commit
Hold shift + click to select a range
6d4f2fa
fix incorrect dims settings
ec6eed3
sparse conv3d
dc8d707
fix out dims
fa365cb
test performance
bb1c375
test large shape success
99c3c41
opt scatter, double performance
621fae1
test float16
2832f05
remove profiling code
c413e96
merge upstream develop
271eea6
remove pten
904d664
opt code lines
2eea16b
correct boundary judgment
84e317e
only cpu
9838b15
test ci
9c0dff1
test ci
6174cd1
merge upstream
60af44b
remove the including paddle/fluid header; extract the conmmon function
4da7e4c
opt code lines
6e3e5ef
use DenseTensor::data() instead of mutable_data
bcb0089
return rulebook for backward
94f192e
specify layout
edc3c57
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
a114731
rename:conv -> sparse_conv3d
f2d0073
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,148 @@ | ||
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
|
||
#include "paddle/phi/core/dense_tensor.h" | ||
#include "paddle/phi/core/sparse_coo_tensor.h" | ||
#include "paddle/phi/kernels/empty_kernel.h" | ||
|
||
namespace phi { | ||
namespace sparse { | ||
|
||
struct Dims4D { | ||
int dims[4]; | ||
Dims4D(const int batch, const int x, const int y, const int z) { | ||
dims[0] = batch; | ||
dims[1] = z; | ||
dims[2] = y; | ||
dims[3] = x; | ||
} | ||
HOSTDEVICE const int& operator[](int i) const { return dims[i]; } | ||
}; | ||
|
||
// Judge whether the current position x is in (lower, upper) | ||
inline HOSTDEVICE bool Check(const int& x, | ||
const int& kx, | ||
const int& pad, | ||
const int& stride, | ||
const int dilation, | ||
const int kdim, | ||
const int xdim) { | ||
const int lower = x - dilation * kx + pad; | ||
const int uper = x + (kdim - kx - 1) * dilation - pad; | ||
return (lower >= 0 && lower % stride == 0 && uper < xdim); | ||
} | ||
|
||
// Check whether the current position(x, y, z) is legal: | ||
// Judge the minimum and maximum values at each latitude | ||
inline HOSTDEVICE bool Check(const Dims4D& dims, | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 函数加上功能注释 There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 好的,下一个GPU代码的PR里再补充 |
||
const Dims4D& kernel_dims, | ||
const Dims4D& paddings, | ||
const Dims4D& dilations, | ||
const Dims4D& strides, | ||
const int x, | ||
const int y, | ||
const int z, | ||
const int kx, | ||
const int ky, | ||
const int kz) { | ||
bool x_valid = Check( | ||
x, kx, paddings[3], strides[3], dilations[3], kernel_dims[3], dims[3]); | ||
bool y_valid = Check( | ||
y, ky, paddings[2], strides[2], dilations[2], kernel_dims[2], dims[2]); | ||
bool z_valid = Check( | ||
z, kz, paddings[1], strides[1], dilations[1], kernel_dims[1], dims[1]); | ||
return (x_valid && y_valid && z_valid); | ||
} | ||
|
||
template <typename Dim> | ||
inline HOSTDEVICE int PointToIndex(const int& batch, | ||
const int& x, | ||
const int& y, | ||
const int& z, | ||
const Dim& dims) { | ||
return batch * dims[1] * dims[2] * dims[3] + z * dims[2] * dims[3] + | ||
y * dims[3] + x; | ||
} | ||
|
||
template <typename Dim> | ||
inline HOSTDEVICE void IndexToPoint( | ||
const int index, const Dim& dims, int* batch, int* x, int* y, int* z) { | ||
int n = index; | ||
*x = n % dims[3]; | ||
n /= dims[3]; | ||
*y = n % dims[2]; | ||
n /= dims[2]; | ||
*z = n % dims[1]; | ||
n /= dims[1]; | ||
*batch = n; | ||
} | ||
|
||
inline void GetOutShape(const DDim& x_dims, | ||
const DDim& kernel_dims, | ||
const std::vector<int>& paddings, | ||
const std::vector<int>& dilations, | ||
const std::vector<int>& strides, | ||
DDim* out_dims) { | ||
PADDLE_ENFORCE_EQ( | ||
x_dims.size(), | ||
5, | ||
phi::errors::InvalidArgument("the shape of x should be (N, D, H, W, C)")); | ||
PADDLE_ENFORCE_EQ(kernel_dims.size(), | ||
5, | ||
phi::errors::InvalidArgument( | ||
"the shape of kernel should be (D, H, W, C, OC)")); | ||
|
||
// infer out shape | ||
(*out_dims)[0] = x_dims[0]; | ||
(*out_dims)[4] = kernel_dims[4]; | ||
for (int i = 1; i < 4; i++) { | ||
(*out_dims)[i] = (x_dims[i] + 2 * paddings[i - 1] - | ||
dilations[i - 1] * (kernel_dims[i - 1] - 1) - 1) / | ||
strides[i - 1] + | ||
1; | ||
} | ||
} | ||
|
||
template <typename T, typename Context> | ||
void Conv3dKernel(const Context& dev_ctx, | ||
const SparseCooTensor& x, | ||
const DenseTensor& kernel, | ||
const std::vector<int>& paddings, | ||
const std::vector<int>& dilations, | ||
const std::vector<int>& strides, | ||
const int groups, | ||
SparseCooTensor* out, | ||
DenseTensor* rulebook); | ||
|
||
template <typename T, typename Context> | ||
SparseCooTensor Conv3d(const Context& dev_ctx, | ||
const SparseCooTensor& x, | ||
const DenseTensor kernel, | ||
const std::vector<int>& paddings, | ||
const std::vector<int>& dilations, | ||
const std::vector<int>& strides, | ||
const int groups, | ||
DenseTensor* rulebook) { | ||
DenseTensor indices = phi::Empty<T, Context>(dev_ctx); | ||
DenseTensor values = phi::Empty<T, Context>(dev_ctx); | ||
SparseCooTensor coo(indices, values, x.dims()); | ||
Conv3dKernel<T, Context>( | ||
dev_ctx, x, kernel, paddings, dilations, strides, groups, &coo, rulebook); | ||
return coo; | ||
} | ||
|
||
} // namespace sparse | ||
} // namespace phi |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,181 @@ | ||
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
|
||
#include <set> | ||
|
||
#include "paddle/phi/api/lib/utils/allocator.h" | ||
#include "paddle/phi/backends/gpu/gpu_context.h" | ||
#include "paddle/phi/core/dense_tensor.h" | ||
#include "paddle/phi/core/kernel_registry.h" | ||
#include "paddle/phi/core/sparse_coo_tensor.h" | ||
#include "paddle/phi/core/tensor_meta.h" | ||
#include "paddle/phi/kernels/funcs/blas/blas.h" | ||
|
||
namespace phi { | ||
namespace sparse { | ||
|
||
// such as: kernel(3, 3, 3), kernel_size = 27 | ||
// counter_per_weight: (kernel_size) | ||
// TODO(zhangkaihuo): optimize performance with multithreading | ||
template <typename T, typename Context> | ||
void ProductRuleBook(const Context& dev_ctx, | ||
const SparseCooTensor& x, | ||
const DenseTensor& kernel, | ||
const std::vector<int>& paddings, | ||
const std::vector<int>& dilations, | ||
const std::vector<int>& strides, | ||
const DDim& out_dims, | ||
DenseTensor* rulebook, | ||
DenseTensor* counter_per_kernel) { | ||
const auto& kernel_dims = kernel.dims(); | ||
const int64_t non_zero_num = x.nnz(); | ||
const auto& non_zero_indices = x.non_zero_indices(); | ||
const int* indices_ptr = non_zero_indices.data<int>(); | ||
dev_ctx.Alloc(counter_per_kernel, | ||
counter_per_kernel->dtype(), | ||
sizeof(int) * counter_per_kernel->numel()); | ||
int* counter_ptr = counter_per_kernel->data<int>(); | ||
int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2]; | ||
memset(counter_ptr, 0, kernel_size * sizeof(int)); | ||
|
||
int rulebook_len = 0; | ||
// calc the rulebook_len | ||
const auto& x_dims = x.dims(); | ||
const Dims4D c_x_dims(x_dims[0], x_dims[3], x_dims[2], x_dims[1]); | ||
const Dims4D c_kernel_dims(1, kernel_dims[2], kernel_dims[1], kernel_dims[0]); | ||
const Dims4D c_out_dims(out_dims[0], out_dims[3], out_dims[2], out_dims[1]); | ||
const Dims4D c_paddings(1, paddings[2], paddings[1], paddings[0]); | ||
const Dims4D c_strides(1, strides[2], strides[1], strides[0]); | ||
const Dims4D c_dilations(1, dilations[2], dilations[1], dilations[0]); | ||
|
||
auto f_calc_rulebook = [&](int* rulebook_ptr) { | ||
int kernel_index = 0, rulebook_index = 0; | ||
for (int kz = 0; kz < kernel_dims[0]; kz++) { | ||
for (int ky = 0; ky < kernel_dims[1]; ky++) { | ||
for (int kx = 0; kx < kernel_dims[2]; kx++) { | ||
for (int64_t i = 0; i < non_zero_num; i++) { | ||
int batch = indices_ptr[i]; | ||
int in_z = indices_ptr[i + non_zero_num]; | ||
int in_y = indices_ptr[i + 2 * non_zero_num]; | ||
int in_x = indices_ptr[i + 3 * non_zero_num]; | ||
int out_z = (in_z + paddings[0] - kz * dilations[0]) / strides[0]; | ||
int out_y = (in_y + paddings[1] - ky * dilations[1]) / strides[1]; | ||
int out_x = (in_x + paddings[2] - kx * dilations[2]) / strides[2]; | ||
if (Check(c_x_dims, | ||
c_kernel_dims, | ||
c_paddings, | ||
c_dilations, | ||
c_strides, | ||
in_x, | ||
in_y, | ||
in_z, | ||
kx, | ||
ky, | ||
kz)) { | ||
if (rulebook_ptr == nullptr) { | ||
counter_ptr[kernel_index] += 1; | ||
++rulebook_len; | ||
} else { | ||
rulebook_ptr[rulebook_index] = kernel_index; | ||
rulebook_ptr[rulebook_index + rulebook_len] = i; // in_i | ||
rulebook_ptr[rulebook_index + rulebook_len * 2] = | ||
PointToIndex<DDim>( | ||
batch, out_x, out_y, out_z, out_dims); // out_index | ||
++rulebook_index; | ||
} | ||
} | ||
} | ||
++kernel_index; | ||
} | ||
} | ||
} | ||
}; | ||
|
||
f_calc_rulebook(nullptr); | ||
// alloc the rulebook | ||
rulebook->ResizeAndAllocate({3, rulebook_len}); | ||
dev_ctx.Alloc(rulebook, rulebook->dtype(), rulebook->numel() * sizeof(int)); | ||
int* rulebook_ptr = rulebook->data<int>(); | ||
f_calc_rulebook(rulebook_ptr); | ||
} | ||
|
||
template <typename T, typename Context> | ||
void UpdateRulebookAndOutIndex(const Context& dev_ctx, | ||
const SparseCooTensor& x, | ||
const int kernel_size, | ||
const int out_channels, | ||
const DDim& out_dims, | ||
DenseTensor* rulebook, | ||
SparseCooTensor* out) { | ||
std::set<int> out_indexs; | ||
int n = rulebook->dims()[1]; | ||
int* rulebook_ptr = rulebook->data<int>(); | ||
for (int i = 0; i < n; i++) { | ||
out_indexs.insert(rulebook_ptr[i + n * 2]); | ||
} | ||
|
||
int out_non_zero_num = out_indexs.size(); | ||
const int64_t sparse_dim = 4; | ||
DenseTensorMeta indices_meta( | ||
DataType::INT32, {sparse_dim, out_non_zero_num}, DataLayout::NCHW); | ||
DenseTensorMeta values_meta( | ||
x.dtype(), {out_non_zero_num, out_channels}, x.layout()); | ||
phi::DenseTensor out_indices = phi::Empty(dev_ctx, std::move(indices_meta)); | ||
phi::DenseTensor out_values = phi::Empty(dev_ctx, std::move(values_meta)); | ||
dev_ctx.Alloc( | ||
&out_indices, out_indices.dtype(), out_indices.numel() * sizeof(int)); | ||
int* out_indices_ptr = out_indices.data<int>(); | ||
int i = 0; | ||
for (auto it = out_indexs.begin(); it != out_indexs.end(); it++, i++) { | ||
const int index = *it; | ||
int batch, x, y, z; | ||
IndexToPoint<DDim>(index, out_dims, &batch, &x, &y, &z); | ||
out_indices_ptr[i] = batch; | ||
out_indices_ptr[i + out_non_zero_num] = z; | ||
out_indices_ptr[i + out_non_zero_num * 2] = y; | ||
out_indices_ptr[i + out_non_zero_num * 3] = x; | ||
} | ||
for (i = 0; i < n; i++) { | ||
int out_index = rulebook_ptr[i + n * 2]; | ||
rulebook_ptr[i + n * 2] = | ||
std::distance(out_indexs.begin(), out_indexs.find(out_index)); | ||
} | ||
|
||
out->SetMember(out_indices, out_values, out_dims, true); | ||
} | ||
|
||
template <typename T> | ||
void Gather( | ||
const T* x, const int* indexs, const int n, const int channels, T* out) { | ||
for (int i = 0; i < n; i++) { | ||
int real_i = indexs[i]; | ||
memcpy(out + i * channels, x + real_i * channels, channels * sizeof(T)); | ||
} | ||
} | ||
|
||
template <typename T> | ||
void Scatter( | ||
const T* x, const int* indexs, const int n, const int channels, T* out) { | ||
for (int i = 0; i < n; i++) { | ||
int real_i = indexs[i]; | ||
for (int j = 0; j < channels; j++) { | ||
out[real_i * channels + j] += x[i * channels + j]; | ||
} | ||
} | ||
} | ||
|
||
} // namespace sparse | ||
} // namespace phi |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
这个文件 CPU 和 GPU 是共用的吗 ?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
是的