Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add sparse conv3d kernel #39879

Merged
merged 24 commits into from
Feb 28, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion paddle/phi/core/sparse_coo_tensor.cc
Original file line number Diff line number Diff line change
Expand Up @@ -106,7 +106,7 @@ void SparseCooTensor::SetMember(const DenseTensor& non_zero_indices,
const bool coalesced) {
this->non_zero_indices_ = non_zero_indices;
this->non_zero_elements_ = non_zero_elements;
this->dims_ = dims_;
this->dims_ = dims;
this->coalesced_ = coalesced;
}

Expand Down
148 changes: 148 additions & 0 deletions paddle/phi/kernels/sparse/convolution_kernel.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,148 @@
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/kernels/empty_kernel.h"

namespace phi {
namespace sparse {

struct Dims4D {
int dims[4];
Dims4D(const int batch, const int x, const int y, const int z) {
dims[0] = batch;
dims[1] = z;
dims[2] = y;
dims[3] = x;
}
HOSTDEVICE const int& operator[](int i) const { return dims[i]; }
};

// Judge whether the current position x is in (lower, upper)
inline HOSTDEVICE bool Check(const int& x,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个文件 CPU 和 GPU 是共用的吗 ?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

是的

const int& kx,
const int& pad,
const int& stride,
const int dilation,
const int kdim,
const int xdim) {
const int lower = x - dilation * kx + pad;
const int uper = x + (kdim - kx - 1) * dilation - pad;
return (lower >= 0 && lower % stride == 0 && uper < xdim);
}

// Check whether the current position(x, y, z) is legal:
// Judge the minimum and maximum values at each latitude
inline HOSTDEVICE bool Check(const Dims4D& dims,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

函数加上功能注释

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

好的,下一个GPU代码的PR里再补充

const Dims4D& kernel_dims,
const Dims4D& paddings,
const Dims4D& dilations,
const Dims4D& strides,
const int x,
const int y,
const int z,
const int kx,
const int ky,
const int kz) {
bool x_valid = Check(
x, kx, paddings[3], strides[3], dilations[3], kernel_dims[3], dims[3]);
bool y_valid = Check(
y, ky, paddings[2], strides[2], dilations[2], kernel_dims[2], dims[2]);
bool z_valid = Check(
z, kz, paddings[1], strides[1], dilations[1], kernel_dims[1], dims[1]);
return (x_valid && y_valid && z_valid);
}

template <typename Dim>
inline HOSTDEVICE int PointToIndex(const int& batch,
const int& x,
const int& y,
const int& z,
const Dim& dims) {
return batch * dims[1] * dims[2] * dims[3] + z * dims[2] * dims[3] +
y * dims[3] + x;
}

template <typename Dim>
inline HOSTDEVICE void IndexToPoint(
const int index, const Dim& dims, int* batch, int* x, int* y, int* z) {
int n = index;
*x = n % dims[3];
n /= dims[3];
*y = n % dims[2];
n /= dims[2];
*z = n % dims[1];
n /= dims[1];
*batch = n;
}

inline void GetOutShape(const DDim& x_dims,
const DDim& kernel_dims,
const std::vector<int>& paddings,
const std::vector<int>& dilations,
const std::vector<int>& strides,
DDim* out_dims) {
PADDLE_ENFORCE_EQ(
x_dims.size(),
5,
phi::errors::InvalidArgument("the shape of x should be (N, D, H, W, C)"));
PADDLE_ENFORCE_EQ(kernel_dims.size(),
5,
phi::errors::InvalidArgument(
"the shape of kernel should be (D, H, W, C, OC)"));

// infer out shape
(*out_dims)[0] = x_dims[0];
(*out_dims)[4] = kernel_dims[4];
for (int i = 1; i < 4; i++) {
(*out_dims)[i] = (x_dims[i] + 2 * paddings[i - 1] -
dilations[i - 1] * (kernel_dims[i - 1] - 1) - 1) /
strides[i - 1] +
1;
}
}

template <typename T, typename Context>
void Conv3dKernel(const Context& dev_ctx,
const SparseCooTensor& x,
const DenseTensor& kernel,
const std::vector<int>& paddings,
const std::vector<int>& dilations,
const std::vector<int>& strides,
const int groups,
SparseCooTensor* out,
DenseTensor* rulebook);

template <typename T, typename Context>
SparseCooTensor Conv3d(const Context& dev_ctx,
const SparseCooTensor& x,
const DenseTensor kernel,
const std::vector<int>& paddings,
const std::vector<int>& dilations,
const std::vector<int>& strides,
const int groups,
DenseTensor* rulebook) {
DenseTensor indices = phi::Empty<T, Context>(dev_ctx);
DenseTensor values = phi::Empty<T, Context>(dev_ctx);
SparseCooTensor coo(indices, values, x.dims());
Conv3dKernel<T, Context>(
dev_ctx, x, kernel, paddings, dilations, strides, groups, &coo, rulebook);
return coo;
}

} // namespace sparse
} // namespace phi
181 changes: 181 additions & 0 deletions paddle/phi/kernels/sparse/cpu/convolution.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,181 @@
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <set>

#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/tensor_meta.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"

namespace phi {
namespace sparse {

// such as: kernel(3, 3, 3), kernel_size = 27
// counter_per_weight: (kernel_size)
// TODO(zhangkaihuo): optimize performance with multithreading
template <typename T, typename Context>
void ProductRuleBook(const Context& dev_ctx,
const SparseCooTensor& x,
const DenseTensor& kernel,
const std::vector<int>& paddings,
const std::vector<int>& dilations,
const std::vector<int>& strides,
const DDim& out_dims,
DenseTensor* rulebook,
DenseTensor* counter_per_kernel) {
const auto& kernel_dims = kernel.dims();
const int64_t non_zero_num = x.nnz();
const auto& non_zero_indices = x.non_zero_indices();
const int* indices_ptr = non_zero_indices.data<int>();
dev_ctx.Alloc(counter_per_kernel,
counter_per_kernel->dtype(),
sizeof(int) * counter_per_kernel->numel());
int* counter_ptr = counter_per_kernel->data<int>();
int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2];
memset(counter_ptr, 0, kernel_size * sizeof(int));

int rulebook_len = 0;
// calc the rulebook_len
const auto& x_dims = x.dims();
const Dims4D c_x_dims(x_dims[0], x_dims[3], x_dims[2], x_dims[1]);
const Dims4D c_kernel_dims(1, kernel_dims[2], kernel_dims[1], kernel_dims[0]);
const Dims4D c_out_dims(out_dims[0], out_dims[3], out_dims[2], out_dims[1]);
const Dims4D c_paddings(1, paddings[2], paddings[1], paddings[0]);
const Dims4D c_strides(1, strides[2], strides[1], strides[0]);
const Dims4D c_dilations(1, dilations[2], dilations[1], dilations[0]);

auto f_calc_rulebook = [&](int* rulebook_ptr) {
int kernel_index = 0, rulebook_index = 0;
for (int kz = 0; kz < kernel_dims[0]; kz++) {
for (int ky = 0; ky < kernel_dims[1]; ky++) {
for (int kx = 0; kx < kernel_dims[2]; kx++) {
for (int64_t i = 0; i < non_zero_num; i++) {
int batch = indices_ptr[i];
int in_z = indices_ptr[i + non_zero_num];
int in_y = indices_ptr[i + 2 * non_zero_num];
int in_x = indices_ptr[i + 3 * non_zero_num];
int out_z = (in_z + paddings[0] - kz * dilations[0]) / strides[0];
int out_y = (in_y + paddings[1] - ky * dilations[1]) / strides[1];
int out_x = (in_x + paddings[2] - kx * dilations[2]) / strides[2];
if (Check(c_x_dims,
c_kernel_dims,
c_paddings,
c_dilations,
c_strides,
in_x,
in_y,
in_z,
kx,
ky,
kz)) {
if (rulebook_ptr == nullptr) {
counter_ptr[kernel_index] += 1;
++rulebook_len;
} else {
rulebook_ptr[rulebook_index] = kernel_index;
rulebook_ptr[rulebook_index + rulebook_len] = i; // in_i
rulebook_ptr[rulebook_index + rulebook_len * 2] =
PointToIndex<DDim>(
batch, out_x, out_y, out_z, out_dims); // out_index
++rulebook_index;
}
}
}
++kernel_index;
}
}
}
};

f_calc_rulebook(nullptr);
// alloc the rulebook
rulebook->ResizeAndAllocate({3, rulebook_len});
dev_ctx.Alloc(rulebook, rulebook->dtype(), rulebook->numel() * sizeof(int));
int* rulebook_ptr = rulebook->data<int>();
f_calc_rulebook(rulebook_ptr);
}

template <typename T, typename Context>
void UpdateRulebookAndOutIndex(const Context& dev_ctx,
const SparseCooTensor& x,
const int kernel_size,
const int out_channels,
const DDim& out_dims,
DenseTensor* rulebook,
SparseCooTensor* out) {
std::set<int> out_indexs;
int n = rulebook->dims()[1];
int* rulebook_ptr = rulebook->data<int>();
for (int i = 0; i < n; i++) {
out_indexs.insert(rulebook_ptr[i + n * 2]);
}

int out_non_zero_num = out_indexs.size();
const int64_t sparse_dim = 4;
DenseTensorMeta indices_meta(
DataType::INT32, {sparse_dim, out_non_zero_num}, DataLayout::NCHW);
DenseTensorMeta values_meta(
x.dtype(), {out_non_zero_num, out_channels}, x.layout());
phi::DenseTensor out_indices = phi::Empty(dev_ctx, std::move(indices_meta));
phi::DenseTensor out_values = phi::Empty(dev_ctx, std::move(values_meta));
dev_ctx.Alloc(
&out_indices, out_indices.dtype(), out_indices.numel() * sizeof(int));
int* out_indices_ptr = out_indices.data<int>();
int i = 0;
for (auto it = out_indexs.begin(); it != out_indexs.end(); it++, i++) {
const int index = *it;
int batch, x, y, z;
IndexToPoint<DDim>(index, out_dims, &batch, &x, &y, &z);
out_indices_ptr[i] = batch;
out_indices_ptr[i + out_non_zero_num] = z;
out_indices_ptr[i + out_non_zero_num * 2] = y;
out_indices_ptr[i + out_non_zero_num * 3] = x;
}
for (i = 0; i < n; i++) {
int out_index = rulebook_ptr[i + n * 2];
rulebook_ptr[i + n * 2] =
std::distance(out_indexs.begin(), out_indexs.find(out_index));
}

out->SetMember(out_indices, out_values, out_dims, true);
}

template <typename T>
void Gather(
const T* x, const int* indexs, const int n, const int channels, T* out) {
for (int i = 0; i < n; i++) {
int real_i = indexs[i];
memcpy(out + i * channels, x + real_i * channels, channels * sizeof(T));
}
}

template <typename T>
void Scatter(
const T* x, const int* indexs, const int n, const int channels, T* out) {
for (int i = 0; i < n; i++) {
int real_i = indexs[i];
for (int j = 0; j < channels; j++) {
out[real_i * channels + j] += x[i * channels + j];
}
}
}

} // namespace sparse
} // namespace phi
Loading