Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

implementation of broadcast div backward by reduce #38044

Merged
merged 15 commits into from
Jan 5, 2022
113 changes: 110 additions & 3 deletions paddle/fluid/operators/elementwise/elementwise_div_op.cu
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,8 @@ limitations under the License. */

#include "paddle/fluid/operators/elementwise/elementwise_div_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
#include "paddle/fluid/operators/reduce_ops/reduce_functor_op.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
#include "paddle/fluid/platform/complex.h"
#include "paddle/fluid/platform/float16.h"
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

头文件已经删除


Expand All @@ -23,6 +25,34 @@ namespace plat = paddle::platform;
namespace paddle {
namespace operators {

template <typename T>
struct MulDxDyFunctor {
inline HOSTDEVICE T operator()(const T& a, const T& b) const { return a * b; }
};
template <typename T>
struct MulDxDyFunctor<paddle::platform::complex<T>> {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

直接叫MulFunctor和DivFunctor不行吗

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

名字修改为MulGradFunctor和DivGradFunctor

inline HOSTDEVICE paddle::platform::complex<T> operator()(
const paddle::platform::complex<T>& x,
const paddle::platform::complex<T>& y) const {
paddle::platform::complex<T> y_conj(y.real, -y.imag);
return x * y_conj;
}
};

template <typename T>
struct DivDxDyFunctor {
inline HOSTDEVICE T operator()(const T& a, const T& b) const { return a / b; }
};
template <typename T>
struct DivDxDyFunctor<paddle::platform::complex<T>> {
inline HOSTDEVICE paddle::platform::complex<T> operator()(
const paddle::platform::complex<T>& x,
const paddle::platform::complex<T>& y) const {
paddle::platform::complex<T> y_conj(y.real, -y.imag);
return x / y_conj;
}
};

template <typename T>
static __global__ void SimpleElemwiseDivGradCUDAKernel(const T* x, const T* y,
const T* out,
Expand All @@ -33,7 +63,9 @@ static __global__ void SimpleElemwiseDivGradCUDAKernel(const T* x, const T* y,

while (col < size) {
T o = dout[col];
dx[col] = o / y[col];
if (dx != nullptr) {
dx[col] = o / y[col];
}
dy[col] = -o * out[col] / y[col];
col += blockDim.x * gridDim.x;
}
Expand All @@ -55,7 +87,9 @@ SimpleElemwiseDivGradCUDAKernel<paddle::platform::complex<float>>(
paddle::platform::complex<float> y_conj(y[col].real, -y[col].imag);
paddle::platform::complex<float> out_div_y_conj((out[col] / y[col]).real,
-(out[col] / y[col]).imag);
dx[col] = o / y_conj;
if (dx != nullptr) {
dx[col] = o / y_conj;
}
dy[col] = -o * out_div_y_conj;
col += blockDim.x * gridDim.x;
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这种写法可以修改成为 grid_stride的写法,见链接:https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.

}
Expand All @@ -77,12 +111,85 @@ SimpleElemwiseDivGradCUDAKernel<paddle::platform::complex<double>>(
paddle::platform::complex<double> y_conj(y[col].real, -y[col].imag);
paddle::platform::complex<double> out_div_y_conj((out[col] / y[col]).real,
-(out[col] / y[col]).imag);
dx[col] = o / y_conj;
if (dx != nullptr) {
dx[col] = o / y_conj;
}
dy[col] = -o * out_div_y_conj;
col += blockDim.x * gridDim.x;
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

同上

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.

}
}

template <typename DeviceContext, typename T>
typename std::enable_if<
std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
default_elementwise_div_grad(const framework::ExecutionContext& ctx,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

同上

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.

const framework::Tensor* x,
const framework::Tensor* y,
const framework::Tensor* out,
const framework::Tensor* dout,
framework::Tensor* dx, framework::Tensor* dy) {
int axis = ctx.Attr<int>("axis");
auto* dout_data = dout->data<T>();
dim3 block_size = dim3(ELEMENTWISE_BLOCK_SIZE, 1);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

block_size 定义了但没有被使用

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

已经删掉

// dx
if (dx != nullptr) {
auto* dx_data = dx->mutable_data<T>(ctx.GetPlace());
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

mutable_data的结果不必传给指针(下文没用到指针),下同

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.

if (dx->dims() == dout->dims()) {
// dx = dout/y
ElementwiseComputeEx<DivDxDyFunctor<T>, DeviceContext, T>(
ctx, dout, y, axis, DivDxDyFunctor<T>(), dx);
} else {
// For inplace strategy, dx will be stored in addr of dout, which makes
// the result of dy wrong.
if (dx->IsSharedBufferWith(*dout)) {
dx->clear();
dx->mutable_data<T>(x->dims(), ctx.GetPlace());
}
framework::Tensor div_dx;
div_dx.Resize(dout->dims());

ElementwiseComputeEx<DivDxDyFunctor<T>, DeviceContext, T>(
ctx, dout, y, axis, DivDxDyFunctor<T>(), &div_dx);

std::vector<int> reduce_dims = GetReduceDim(x->dims(), out->dims(), axis);
gpuStream_t stream = ctx.cuda_device_context().stream();
TensorReduceFunctorImpl<T, T, CustomSum>(div_dx, dx, reduce_dims, stream);
}
}
// dy
if (dy != nullptr) {
auto* dy_data = dy->mutable_data<T>(ctx.GetPlace());
if (dy->dims() == dout->dims()) {
if (dy_data != dout_data) {
// dy = - dout * out / y
auto size = dy->numel();
dim3 grid_size = dim3(
(size + ELEMENTWISE_BLOCK_SIZE - 1) / ELEMENTWISE_BLOCK_SIZE, 1);
SimpleElemwiseDivGradCUDAKernel<T><<<
grid_size, block_size, 0,
ctx.template device_context<plat::CUDADeviceContext>().stream()>>>(
x->data<T>(), y->data<T>(), out->data<T>(), dout->data<T>(), size,
nullptr, dy->mutable_data<T>(ctx.GetPlace()));
}
} else {
// dy = - dout * out / y
framework::Tensor mul_dy;
mul_dy.Resize(dout->dims());
ElementwiseComputeEx<MulDxDyFunctor<T>, DeviceContext, T>(
ctx, dout, out, axis, MulDxDyFunctor<T>(), &mul_dy);

framework::Tensor div_dy;
div_dy.Resize(dout->dims());
ElementwiseComputeEx<DivDxDyFunctor<T>, DeviceContext, T>(
ctx, &mul_dy, y, axis, DivDxDyFunctor<T>(), &div_dy);

std::vector<int> reduce_dims = GetReduceDim(y->dims(), out->dims(), axis);
gpuStream_t stream = ctx.cuda_device_context().stream();
TensorReduceFunctorImpl<T, T, CustomSub>(div_dy, dy, reduce_dims, stream);
}
}
}

template <typename DeviceContext, typename T>
typename std::enable_if<
std::is_same<DeviceContext, plat::CUDADeviceContext>::value>::type
Expand Down
35 changes: 28 additions & 7 deletions paddle/fluid/operators/elementwise/elementwise_div_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -109,6 +109,21 @@ struct DivDoubleDY {
}
};

template <typename DeviceContext, typename T>
typename std::enable_if<
std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
default_elementwise_div_grad(const framework::ExecutionContext& ctx,
const framework::Tensor* x,
const framework::Tensor* y,
const framework::Tensor* out,
const framework::Tensor* dout,
framework::Tensor* dx, framework::Tensor* dy) {
int axis = ctx.Attr<int>("axis");

ElemwiseGradCompute<DeviceContext, T, DivGradDX<T>, DivGradDY<T>>(
ctx, *x, *y, *out, *dout, axis, dx, dy, DivGradDX<T>(), DivGradDY<T>());
}

template <typename DeviceContext, typename T>
typename std::enable_if<
std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
Expand All @@ -117,13 +132,21 @@ elementwise_div_grad(const framework::ExecutionContext& ctx,
const framework::Tensor* out,
const framework::Tensor* dout, framework::Tensor* dx,
framework::Tensor* dy) {
int axis = ctx.Attr<int>("axis");
ElemwiseGradCompute<DeviceContext, T, DivGradDX<T>, DivGradDY<T>>(
ctx, *x, *y, *out, *dout, axis, dx, dy, DivGradDX<T>(), DivGradDY<T>());
default_elementwise_div_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
}

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
template <typename DeviceContext, typename T>
// cuda definition
typename std::enable_if<
std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
default_elementwise_div_grad(const framework::ExecutionContext& ctx,
const framework::Tensor* x,
const framework::Tensor* y,
const framework::Tensor* out,
const framework::Tensor* dout,
framework::Tensor* dx, framework::Tensor* dy);

template <typename DeviceContext, typename T>
typename std::enable_if<
std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
Expand All @@ -147,14 +170,12 @@ class ElementwiseDivGradKernel : public ElemwiseGradKernel<T> {
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
int axis = ctx.Attr<int>("axis");

if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

DefaultElementwiseDivGrad已经包括这个分支了,可以删除

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.

elementwise_div_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
} else {
ElemwiseGradCompute<DeviceContext, T, DivGradDX<T>, DivGradDY<T>>(
ctx, *x, *y, *out, *dout, axis, dx, dy, DivGradDX<T>(),
DivGradDY<T>());
default_elementwise_div_grad<DeviceContext, T>(ctx, x, y, out, dout, dx,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

default也改个名字吧,比如改成Common,或者其他更好的

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

后续会统一修改

dy);
}
}
};
Expand Down