Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add rocm support for fft api #36415

Merged
merged 1 commit into from
Oct 19, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions paddle/fluid/operators/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -102,8 +102,7 @@ else()
op_library(warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale)
endif()


if (WITH_GPU AND (NOT WITH_ROCM))
if (WITH_GPU OR WITH_ROCM)
if (MKL_FOUND AND WITH_ONEMKL)
op_library(spectral_op SRCS spectral_op.cc spectral_op.cu DEPS dynload_cuda dynload_mklrt ${OP_HEADER_DEPS})
target_include_directories(spectral_op PRIVATE ${MKL_INCLUDE})
Expand Down
261 changes: 261 additions & 0 deletions paddle/fluid/operators/spectral_helper.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,261 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/operators/spectral_op.h"

#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/dynload/hipfft.h"
#endif

#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/dynload/cufft.h"
#endif

namespace paddle {
namespace operators {
using ScalarType = framework::proto::VarType::Type;
const int64_t kMaxCUFFTNdim = 3;
const int64_t kMaxDataNdim = kMaxCUFFTNdim + 1;
// This struct is used to easily compute hashes of the
// parameters. It will be the **key** to the plan cache.
struct PlanKey {
// between 1 and kMaxCUFFTNdim, i.e., 1 <= signal_ndim <= 3
int64_t signal_ndim_;
// These include additional batch dimension as well.
int64_t sizes_[kMaxDataNdim];
int64_t input_shape_[kMaxDataNdim];
int64_t output_shape_[kMaxDataNdim];
FFTTransformType fft_type_;
ScalarType value_type_;

PlanKey() = default;

PlanKey(const std::vector<int64_t>& in_shape,
const std::vector<int64_t>& out_shape,
const std::vector<int64_t>& signal_size, FFTTransformType fft_type,
ScalarType value_type) {
// Padding bits must be zeroed for hashing
memset(this, 0, sizeof(*this));
signal_ndim_ = signal_size.size() - 1;
fft_type_ = fft_type;
value_type_ = value_type;

std::copy(signal_size.cbegin(), signal_size.cend(), sizes_);
std::copy(in_shape.cbegin(), in_shape.cend(), input_shape_);
std::copy(out_shape.cbegin(), out_shape.cend(), output_shape_);
}
};

#if defined(PADDLE_WITH_CUDA)
// An RAII encapsulation of cuFFTHandle
class CuFFTHandle {
::cufftHandle handle_;

public:
CuFFTHandle() {
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cufftCreate(&handle_));
}

::cufftHandle& get() { return handle_; }
const ::cufftHandle& get() const { return handle_; }

~CuFFTHandle() {
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cufftDestroy(handle_));
}
};

using plan_size_type = long long int; // NOLINT
// This class contains all the information needed to execute a cuFFT plan:
// 1. the plan
// 2. the workspace size needed
class CuFFTConfig {
public:
// Only move semantics is enought for this class. Although we already use
// unique_ptr for the plan, still remove copy constructor and assignment op so
// we don't accidentally copy and take perf hit.
explicit CuFFTConfig(const PlanKey& plan_key)
: CuFFTConfig(
std::vector<int64_t>(plan_key.sizes_,
plan_key.sizes_ + plan_key.signal_ndim_ + 1),
plan_key.signal_ndim_, plan_key.fft_type_, plan_key.value_type_) {}

// sizes are full signal, including batch size and always two-sided
CuFFTConfig(const std::vector<int64_t>& sizes, const int64_t signal_ndim,
FFTTransformType fft_type, ScalarType dtype)
: fft_type_(fft_type), value_type_(dtype) {
// signal sizes (excluding batch dim)
std::vector<plan_size_type> signal_sizes(sizes.begin() + 1, sizes.end());

// input batch size
const auto batch = static_cast<plan_size_type>(sizes[0]);
// const int64_t signal_ndim = sizes.size() - 1;
PADDLE_ENFORCE_EQ(signal_ndim, sizes.size() - 1,
platform::errors::InvalidArgument(
"The signal_ndim must be equal to sizes.size() - 1,"
"But signal_ndim is: [%d], sizes.size() - 1 is: [%d]",
signal_ndim, sizes.size() - 1));

cudaDataType itype, otype, exec_type;
const auto complex_input = has_complex_input(fft_type);
const auto complex_output = has_complex_output(fft_type);
if (dtype == framework::proto::VarType::FP32) {
itype = complex_input ? CUDA_C_32F : CUDA_R_32F;
otype = complex_output ? CUDA_C_32F : CUDA_R_32F;
exec_type = CUDA_C_32F;
} else if (dtype == framework::proto::VarType::FP64) {
itype = complex_input ? CUDA_C_64F : CUDA_R_64F;
otype = complex_output ? CUDA_C_64F : CUDA_R_64F;
exec_type = CUDA_C_64F;
} else if (dtype == framework::proto::VarType::FP16) {
itype = complex_input ? CUDA_C_16F : CUDA_R_16F;
otype = complex_output ? CUDA_C_16F : CUDA_R_16F;
exec_type = CUDA_C_16F;
} else {
PADDLE_THROW(platform::errors::InvalidArgument(
"cuFFT only support transforms of type float16, float32 and "
"float64"));
}

// disable auto allocation of workspace to use allocator from the framework
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cufftSetAutoAllocation(
plan(), /* autoAllocate */ 0));

size_t ws_size_t;

PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cufftXtMakePlanMany(
plan(), signal_ndim, signal_sizes.data(),
/* inembed */ nullptr, /* base_istride */ 1, /* idist */ 1, itype,
/* onembed */ nullptr, /* base_ostride */ 1, /* odist */ 1, otype,
batch, &ws_size_t, exec_type));

ws_size = ws_size_t;
}

const cufftHandle& plan() const { return plan_ptr.get(); }

FFTTransformType transform_type() const { return fft_type_; }
ScalarType data_type() const { return value_type_; }
size_t workspace_size() const { return ws_size; }

private:
CuFFTHandle plan_ptr;
size_t ws_size;
FFTTransformType fft_type_;
ScalarType value_type_;
};

#elif defined(PADDLE_WITH_HIP)
// An RAII encapsulation of cuFFTHandle
class HIPFFTHandle {
::hipfftHandle handle_;

public:
HIPFFTHandle() {
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftCreate(&handle_));
}

::hipfftHandle& get() { return handle_; }
const ::hipfftHandle& get() const { return handle_; }

~HIPFFTHandle() {
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftDestroy(handle_));
}
};
using plan_size_type = int;
// This class contains all the information needed to execute a cuFFT plan:
// 1. the plan
// 2. the workspace size needed
class HIPFFTConfig {
public:
// Only move semantics is enought for this class. Although we already use
// unique_ptr for the plan, still remove copy constructor and assignment op so
// we don't accidentally copy and take perf hit.
explicit HIPFFTConfig(const PlanKey& plan_key)
: HIPFFTConfig(
std::vector<int64_t>(plan_key.sizes_,
plan_key.sizes_ + plan_key.signal_ndim_ + 1),
plan_key.signal_ndim_, plan_key.fft_type_, plan_key.value_type_) {}

// sizes are full signal, including batch size and always two-sided
HIPFFTConfig(const std::vector<int64_t>& sizes, const int64_t signal_ndim,
FFTTransformType fft_type, ScalarType dtype)
: fft_type_(fft_type), value_type_(dtype) {
// signal sizes (excluding batch dim)
std::vector<plan_size_type> signal_sizes(sizes.begin() + 1, sizes.end());

// input batch size
const auto batch = static_cast<plan_size_type>(sizes[0]);
// const int64_t signal_ndim = sizes.size() - 1;
PADDLE_ENFORCE_EQ(signal_ndim, sizes.size() - 1,
platform::errors::InvalidArgument(
"The signal_ndim must be equal to sizes.size() - 1,"
"But signal_ndim is: [%d], sizes.size() - 1 is: [%d]",
signal_ndim, sizes.size() - 1));

hipfftType exec_type = [&] {
if (dtype == framework::proto::VarType::FP32) {
switch (fft_type) {
case FFTTransformType::C2C:
return HIPFFT_C2C;
case FFTTransformType::R2C:
return HIPFFT_R2C;
case FFTTransformType::C2R:
return HIPFFT_C2R;
}
} else if (dtype == framework::proto::VarType::FP64) {
switch (fft_type) {
case FFTTransformType::C2C:
return HIPFFT_Z2Z;
case FFTTransformType::R2C:
return HIPFFT_D2Z;
case FFTTransformType::C2R:
return HIPFFT_Z2D;
}
}
PADDLE_THROW(platform::errors::InvalidArgument(
"hipFFT only support transforms of type float32 and float64"));
}();

// disable auto allocation of workspace to use allocator from the framework
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftSetAutoAllocation(
plan(), /* autoAllocate */ 0));

size_t ws_size_t;

PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftMakePlanMany(
plan(), signal_ndim, signal_sizes.data(),
/* inembed */ nullptr, /* base_istride */ 1, /* idist */ 1,
/* onembed */ nullptr, /* base_ostride */ 1, /* odist */ 1, exec_type,
batch, &ws_size_t));

ws_size = ws_size_t;
}

const hipfftHandle& plan() const { return plan_ptr.get(); }

FFTTransformType transform_type() const { return fft_type_; }
ScalarType data_type() const { return value_type_; }
size_t workspace_size() const { return ws_size; }

private:
HIPFFTHandle plan_ptr;
size_t ws_size;
FFTTransformType fft_type_;
ScalarType value_type_;
};
#endif
} // namespace operators
} // namespace paddle
Loading