Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement GPU kernel for cross entropy operator. #3501

Merged
merged 6 commits into from
Aug 22, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion paddle/framework/pybind.cc
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ limitations under the License. */
namespace py = pybind11;

USE_OP(add_two);
USE_CPU_ONLY_OP(onehot_cross_entropy);
USE_OP(onehot_cross_entropy);
USE_OP(sgd);
USE_OP(mul);
USE_OP(mean);
Expand Down
15 changes: 6 additions & 9 deletions paddle/operators/cross_entropy_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -39,11 +39,10 @@ class OnehotCrossEntropyGradientOp : public framework::OperatorWithKernel {

protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto X_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto dX = ctx.Output<Tensor>(framework::GradVarName("X"));
auto X = ctx.Input<Tensor>("X");

// TODO(superjom) add enforce here after helper functions ready
X_grad->Resize(X->dims());
dX->Resize(X->dims());
}
};

Expand All @@ -70,9 +69,7 @@ namespace ops = paddle::operators;
REGISTER_OP(onehot_cross_entropy, ops::OnehotCrossEntropyOp,
ops::OnehotCrossEntropyOpMaker, onehot_cross_entropy_grad,
ops::OnehotCrossEntropyGradientOp);
REGISTER_OP_CPU_KERNEL(
onehot_cross_entropy,
ops::OnehotCrossEntropyOpKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
onehot_cross_entropy_grad,
ops::OnehotCrossEntropyGradientOpKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(onehot_cross_entropy,
ops::OnehotCrossEntropyOpKernel<float>);
REGISTER_OP_CPU_KERNEL(onehot_cross_entropy_grad,
ops::OnehotCrossEntropyGradientOpKernel<float>);
122 changes: 117 additions & 5 deletions paddle/operators/cross_entropy_op.cu
Original file line number Diff line number Diff line change
Expand Up @@ -12,10 +12,122 @@
See the License for the specific language governing permissions and
limitations under the License. */

#define EIGEN_USE_GPU
#include "paddle/operators/cross_entropy_op.h"
#include "paddle/framework/op_registry.h"
#include "paddle/platform/assert.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
__host__ __device__ T clipping_log(const T x) {
PADDLE_ASSERT(std::is_floating_point<T>::value);
const T kApproInf = 1e20;
T v = log(x);
if (v == INFINITY) {
return kApproInf;
}
if (v == -INFINITY) {
return -kApproInf;
}
return v;
}

template <typename T>
__global__ void CrossEntropyKernel(T* Y, const T* X, const int* label,
const int N, const int D) {
// TOOD(qingqing) define CUDA_1D_KERNEL_LOOP macro in a common file.
// CUDA_1D_KERNEL_LOOP(i, N) {
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
i += blockDim.x * gridDim.x) {
PADDLE_ASSERT(label[i] >= 0 && label[i] < D);
Y[i] = -clipping_log(X[i * D + label[i]]);
}
}

// TODO(qingqing): make zero setting an common function.
template <typename T>
__global__ void zero(T* X, const int N) {
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
i += blockDim.x * gridDim.x) {
X[i] = 0.0;
}
}

template <typename T>
__global__ void CrossEntropyGradientKernel(T* dX, const T* dY, const T* X,
const int* label, const int N,
const int D) {
// TOOD(qingqing) define CUDA_1D_KERNEL_LOOP macro in a common file.
// CUDA_1D_KERNEL_LOOP(i, N) {
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
i += blockDim.x * gridDim.x) {
int idx = i * D + label[i];
dX[idx] = -dY[i] / X[idx];
}
}

template <typename T>
class OnehotCrossEntropyOpCUDAKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"It must use GPUPlace.");

auto X = ctx.Input<Tensor>("X");
const T* Xdata = X->data<T>();
const int* label_data = ctx.Input<Tensor>("label")->data<int>();
auto Y = ctx.Output<Tensor>("Y");
Y->mutable_data<T>(ctx.GetPlace());
T* Ydata = Y->data<T>();

int N = X->dims()[0];
int D = X->dims()[1];
int block = 512;
int grid = (N + block - 1) / block;
// TODO(qingqing) launch kernel on specified stream
// base on ExecutionContext.
CrossEntropyKernel<T><<<grid, block>>>(Ydata, Xdata, label_data, N, D);
}
};

template <typename T>
class OnehotCrossEntropyGradientOpCUDAKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"It must use GPUPlace.");

auto X = ctx.Input<Tensor>("X");
auto dX = ctx.Output<Tensor>(framework::GradVarName("X"));
auto dY = ctx.Input<Tensor>(framework::GradVarName("Y"));
auto label = ctx.Input<Tensor>("label");

auto* dXdata = dX->template mutable_data<T>(ctx.GetPlace());
auto* dYdata = dY->template data<T>();
auto* Xdata = X->template data<T>();
auto* label_data = label->data<int>();

int N = X->dims()[0];
int D = X->dims()[1];
int block = 512;
int grid = (N * D + block - 1) / block;
zero<T><<<grid, block>>>(dXdata, N * D);

grid = (N + block - 1) / block;
// TODO(qingqing): launch kernel on specified stream
// base on ExecutionContext.
CrossEntropyGradientKernel<T><<<grid, block>>>(dXdata, dYdata, Xdata,
label_data, N, D);
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
onehot_cross_entropy,
ops::OnehotCrossEntropyOpKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(onehot_cross_entropy,
ops::OnehotCrossEntropyOpCUDAKernel<float>);
REGISTER_OP_GPU_KERNEL(onehot_cross_entropy_grad,
ops::OnehotCrossEntropyGradientOpCUDAKernel<float>);
14 changes: 11 additions & 3 deletions paddle/operators/cross_entropy_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ namespace operators {
using Tensor = framework::Tensor;

template <typename T>
T tolerable_value(T x) {
inline T tolerable_value(const T x) {
static_assert(std::is_floating_point<T>::value,
"tolerable_value works only on float, "
"double and double double.");
Expand All @@ -39,10 +39,13 @@ T tolerable_value(T x) {
return x;
}

template <typename Place, typename T>
template <typename T>
class OnehotCrossEntropyOpKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");

auto X = ctx.Input<Tensor>("X");
const T* Xdata = X->data<T>();
const int* label_data = ctx.Input<Tensor>("label")->data<int>();
Expand All @@ -62,10 +65,13 @@ class OnehotCrossEntropyOpKernel : public framework::OpKernel {
}
};

template <typename Place, typename T>
template <typename T>
class OnehotCrossEntropyGradientOpKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");

auto X = ctx.Input<Tensor>("X");
auto dX = ctx.Output<Tensor>(framework::GradVarName("X"));
auto dY = ctx.Input<Tensor>(framework::GradVarName("Y"));
Expand All @@ -79,6 +85,8 @@ class OnehotCrossEntropyGradientOpKernel : public framework::OpKernel {
const int batch_size = X->dims()[0];
const int class_num = X->dims()[1];

// TODO(qingqing): make zero setting an common function.
memset(dXdata, 0, sizeof(T) * batch_size * class_num);
for (int i = 0; i < batch_size; ++i) {
int index = i * class_num + label_data[i];
dXdata[index] = -tolerable_value(dYdata[i] / Xdata[index]);
Expand Down
3 changes: 2 additions & 1 deletion python/paddle/v2/framework/tests/op_test_util.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,8 @@ def test_all(self):
actual = numpy.array(scope.find_var(out_name).get_tensor())
expect = self.outputs[out_name]
self.assertTrue(
numpy.allclose(actual, expect),
numpy.allclose(
actual, expect, atol=1e-05),
"output name: " + out_name + "has diff")

obj.test_all = test_all
Expand Down
7 changes: 3 additions & 4 deletions python/paddle/v2/framework/tests/test_cross_entropy_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,9 +8,8 @@ class TestCrossEntropy(unittest.TestCase):
__metaclass__ = OpTestMeta

def setUp(self):
# TODO this unit test is not passed
self.type = "onehot_cross_entropy"
batch_size = 100
batch_size = 30
class_num = 10
X = numpy.random.random((batch_size, class_num)).astype("float32")
label = 5 * numpy.ones(batch_size).astype("int32")
Expand All @@ -22,9 +21,9 @@ def setUp(self):


class CrossEntropyGradOpTest(GradientChecker):
def test_softmax_grad(self):
def test_check_grad(self):
op = create_op("onehot_cross_entropy")
batch_size = 100
batch_size = 30
class_num = 10
inputs = {
"X": numpy.random.uniform(
Expand Down