Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[NPU] Support npu op index_select #34611

Merged
merged 1 commit into from
Aug 5, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
57 changes: 57 additions & 0 deletions paddle/fluid/operators/index_select_op_npu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/index_select_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class IndexSelectNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *x = ctx.Input<Tensor>("X");
auto *index = ctx.Input<Tensor>("Index");
auto dim = ctx.Attr<int>("dim");

auto *out = ctx.Output<Tensor>("Out");
out->mutable_data<T>(ctx.GetPlace());

auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();

NpuOpRunner runner;
runner.SetType("GatherV2")
.AddInput(*x)
.AddInput(*index)
.AddInput(std::vector<int32_t>{dim})
.AddOutput(*out);
runner.Run(stream);
}
};

// todo: add class 'IndexSelectGradNPUKernel' here.

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(
index_select,
ops::IndexSelectNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::IndexSelectNPUKernel<paddle::platform::NPUDeviceContext, int>,
ops::IndexSelectNPUKernel<paddle::platform::NPUDeviceContext, int64_t>);
// todo: register npu index_select_grad kernel here.
153 changes: 153 additions & 0 deletions python/paddle/fluid/tests/unittests/npu/test_index_select_op_npu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,153 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
from paddle.static import Program, program_guard

paddle.enable_static()
SEED = 2021


class TestNPUIndexSelect(OpTest):
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "index_select"
self.config()

x_np = np.random.random(self.x_shape).astype(self.x_type)
index_np = np.random.randint(
low=0, high=self.x_shape[self.dim], size=self.index_size)

# compute real output as baseline.
outer_loop = np.prod(self.x_shape[:self.dim])
outer_loop = outer_loop.astype(self.index_type)
x_reshape = [outer_loop] + list(self.x_shape[self.dim:])
x_np_reshape = np.reshape(x_np, tuple(x_reshape))

out_list = []
for i in range(outer_loop):
for j in range(self.index_size):
out_list.append(x_np_reshape[i, index_np[j]])
self.out_shape = list(self.x_shape)
self.out_shape[self.dim] = self.index_size
self.out_shape = tuple(self.out_shape)
out = np.reshape(out_list, self.out_shape)

self.inputs = {'X': x_np, 'Index': index_np}
self.attrs = {'dim': self.dim}
self.outputs = {'Out': out}

# todo: comment second line when index_select grad npu op is ready.
def set_npu(self):
self.__class__.use_npu = True
self.__class__.no_need_check_grad = True

def test_check_output(self):
self.check_output_with_place(self.place)

# todo: replace first line with second line when index_select grad npu op is ready.
def test_check_grad(self):
pass
#self.check_grad_with_place(self.place, ['X'], 'Out')

def config(self):
self.x_shape = (100, 4, 5)
self.x_type = np.float32
self.dim = 1
self.index_size = 100
self.index_type = np.int64


class TestNPUIndexSelectCase2(TestNPUIndexSelect):
def config(self):
self.dim = -2
self.x_type = np.float32
self.index_type = np.int32
self.x_shape = (10, 10, 4, 10)
self.index_size = 10


class TestNPUIndexSelectAPI(unittest.TestCase):
def input_data(self):
self.data_x = np.array([[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0],
[9.0, 10.0, 11.0, 12.0]]).astype('float32')
self.data_index = np.array([0, 1, 1]).astype('int32')

def test_index_select_api(self):
paddle.set_device("npu:0")
paddle.enable_static()
self.input_data()

# case 1:
with program_guard(Program(), Program()):
x = paddle.static.data(name='x', shape=[-1, 4], dtype='float32')
index = paddle.static.data(name='index', shape=[3], dtype='int32')
z = paddle.index_select(x, index, axis=1)
exe = paddle.static.Executor(paddle.NPUPlace(0))
res, = exe.run(feed={'x': self.data_x,
'index': self.data_index},
fetch_list=[z.name],
return_numpy=False)
expect_out = np.array([[1.0, 2.0, 2.0], [5.0, 6.0, 6.0],
[9.0, 10.0, 10.0]]).astype('float32')
self.assertTrue(np.allclose(expect_out, np.array(res)))

# case 2:
with program_guard(Program(), Program()):
x = paddle.static.data(name='x', shape=[-1, 4], dtype='float32')
index = paddle.static.data(name='index', shape=[3], dtype='int32')
z = paddle.index_select(x, index)
exe = paddle.static.Executor(paddle.NPUPlace(0))
res, = exe.run(feed={'x': self.data_x,
'index': self.data_index},
fetch_list=[z.name],
return_numpy=False)
expect_out = np.array([[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0],
[5.0, 6.0, 7.0, 8.0]]).astype('float32')
self.assertTrue(np.allclose(expect_out, np.array(res)))

def test_dygraph_index_select_api(self):
paddle.set_device("npu:0")
paddle.disable_static()
self.input_data()

# case 1:
x = paddle.to_tensor(self.data_x)
index = paddle.to_tensor(self.data_index)
z = paddle.index_select(x, index)
np_z = z.numpy()
expect_out = np.array([[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0],
[5.0, 6.0, 7.0, 8.0]]).astype('float32')
self.assertTrue(np.allclose(expect_out, np_z))

# case 2:
x = paddle.to_tensor(self.data_x)
index = paddle.to_tensor(self.data_index)
z = paddle.index_select(x, index, axis=1)
np_z = z.numpy()
expect_out = np.array([[1.0, 2.0, 2.0], [5.0, 6.0, 6.0],
[9.0, 10.0, 10.0]]).astype('float32')
self.assertTrue(np.allclose(expect_out, np_z))


if __name__ == '__main__':
unittest.main()